Show simple item record

dc.contributor.authorJin, Shan
dc.contributor.authorXu, Hongming
dc.contributor.authorDong, Yue
dc.contributor.authorWang, Xiaofeng
dc.contributor.authorHao, Xinyu
dc.contributor.authorQin, Fengying
dc.contributor.authorWang, Ranran
dc.contributor.authorCong, Fengyu
dc.date.accessioned2024-10-23T11:43:48Z
dc.date.available2024-10-23T11:43:48Z
dc.date.issued2024
dc.identifier.citationJin, S., Xu, H., Dong, Y., Wang, X., Hao, X., Qin, F., Wang, R., & Cong, F. (2024). Ranking attention multiple instance learning for lymph node metastasis prediction on multicenter cervical cancer MRI. <i>Journal of Applied Clinical Medical Physics</i>, <i>Early online</i>, Article e14547. <a href="https://doi.org/10.1002/acm2.14547" target="_blank">https://doi.org/10.1002/acm2.14547</a>
dc.identifier.otherCONVID_243348002
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/97652
dc.description.abstractPurpose In the current clinical diagnostic process, the gold standard for lymph node metastasis (LNM) diagnosis is histopathological examination following surgical lymphadenectomy. Developing a non-invasive and preoperative method for predicting LNM is necessary and holds significant clinical importance. Methods We develop a ranking attention multiple instance learning (RA-MIL) model that integrates convolutional neural networks (CNNs) and ranking attention pooling to diagnose LNM from T2 MRI. Our RA-MIL model applies the CNNs to derive imaging features from 2D MRI slices and employs ranking attention pooling to create patient-level feature representation for diagnostic classification. Based on the MIL and attention theory, informative regions of top-ranking MRI slices from LNM-positive patients are visualized to enhance the interpretability of automatic LNM prediction. This retrospective study collected 300 female patients with cervical cancer who underwent T2-weighted magnetic resonance imaging (MRI) scanning and histopathological diagnosis from one hospital (289 patients) and one open-source dataset (11 patients). Results Our RA-MIL model delivers promising LNM prediction performance, achieving the area under the receiver operating characteristic curve (AUC) of 0.809 on the internal test set and 0.833 on the public dataset. Experiments show significant improvements in LNM status prediction using the proposed RA-MIL model compared with other state-of-the-art (SOTA) comparative deep learning models. Conclusions The developed RA-MIL model has the potential to serve as a non-invasive auxiliary tool for preoperative LNM prediction, offering visual interpretability regarding informative MRI slices and regions in LNM-positive patients.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofseriesJournal of Applied Clinical Medical Physics
dc.rightsCC BY 4.0
dc.subject.othercervical cancer
dc.subject.otherdeep learning
dc.subject.otherlymph node metastasis
dc.subject.othermagnetic resonance imaging
dc.subject.othermultiple instance learning
dc.titleRanking attention multiple instance learning for lymph node metastasis prediction on multicenter cervical cancer MRI
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202410236509
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1526-9914
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s).Journal of Applied Clinical Medical Physics published by Wiley Periodicals,LLC on behalf of The American Association of Physicists in Medicine
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysomagneettikuvaus
dc.subject.ysoimusolmukkeet
dc.subject.ysokohdunkaulan syöpä
dc.subject.ysoetäpesäkkeet
dc.subject.ysokuva-analyysi
dc.subject.ysodiagnostiikka
dc.subject.ysoneuraalilaskenta
dc.subject.ysosyväoppiminen
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12131
jyx.subject.urihttp://www.yso.fi/onto/yso/p2676
jyx.subject.urihttp://www.yso.fi/onto/yso/p17173
jyx.subject.urihttp://www.yso.fi/onto/yso/p2298
jyx.subject.urihttp://www.yso.fi/onto/yso/p16870
jyx.subject.urihttp://www.yso.fi/onto/yso/p416
jyx.subject.urihttp://www.yso.fi/onto/yso/p7291
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1002/acm2.14547
jyx.fundinginformationThis study has received funding from the National Natural Science Foundation of China (Grant No. 82102135), the Fundamental Research Funds for the Central Universities (Grant No. DUT23YG130), and the Natural Science Foundation of Liaoning Province (Grant No. 2022-YGJC-36).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0