Transposable elements in Drosophila montana from harsh cold environments
Tahami, M. S., Vargas-Chavez, C., Poikela, N., Coronado-Zamora, M., González, J., & Kankare, M. (2024). Transposable elements in Drosophila montana from harsh cold environments. Mobile DNA, 15, Article 18. https://doi.org/10.1186/s13100-024-00328-7
Julkaistu sarjassa
Mobile DNATekijät
Päivämäärä
2024Tekijänoikeudet
© The Author(s) 2024
Background
Substantial discoveries during the past century have revealed that transposable elements (TEs) can play a crucial role in genome evolution by affecting gene expression and inducing genetic rearrangements, among other molecular and structural effects. Yet, our knowledge on the role of TEs in adaptation to extreme climates is still at its infancy. The availability of long-read sequencing has opened up the possibility to identify and study potential functional effects of TEs with higher precision. In this work, we used Drosophila montana as a model for cold-adapted organisms to study the association between TEs and adaptation to harsh climates.
Results
Using the PacBio long-read sequencing technique, we de novo identified and manually curated TE sequences in five Drosophila montana genomes from eco-geographically distinct populations. We identified 489 new TE consensus sequences which represented 92% of the total TE consensus in D. montana. Overall, 11–13% of the D. montana genome is occupied by TEs, which as expected are non-randomly distributed across the genome. We identified five potentially active TE families, most of them from the retrotransposon class of TEs. Additionally, we found TEs present in the five analyzed genomes that were located nearby previously identified cold tolerant genes. Some of these TEs contain promoter elements and transcription binding sites. Finally, we detected TEs nearby fixed and polymorphic inversion breakpoints.
Conclusions
Our research revealed a significant number of newly identified TE consensus sequences in the genome of D. montana, suggesting that non-model species should be studied to get a comprehensive view of the TE repertoire in Drosophila species and beyond. Genome annotations with the new D. montana library allowed us to identify TEs located nearby cold tolerant genes, and present at high population frequencies, that contain regulatory regions and are thus good candidates to play a role in D. montana cold stress response. Finally, our annotations also allow us to identify for the first time TEs present in the breakpoints of three D. montana inversions.
...
Julkaisija
BioMed CentralISSN Hae Julkaisufoorumista
1759-8753Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/243301210
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
JG is funded by grant PID2020-115874GB-I00 awarded by MICIU/AEI/https://doi.org/10.13039/501100011033/ and from grant 2021 SGR 00417 awarded by Departament de Recerca i Universitats, Generalitat de Catalunya awarded to J.G. MK was funded by the Academy of Finland project 322980.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Adaptation and ecological speciation in seasonally varying environments at high latitudes : Drosophila virilis group
Hoikkala, Anneli; Poikela, Noora (Informa UK Limited, 2022)Living in high latitudes and altitudes sets specific requirements on species’ ability to forecast seasonal changes and to respond to them in an appropriate way. Adaptation into diverse environmental conditions can also ... -
Chromosomal Inversions and the Demography of Speciation in Drosophila montana and Drosophila flavomontana
Poikela, Noora; Laetsch, Dominik R; Hoikkala, Ville; Lohse, Konrad; Kankare, Maaria (Oxford University Press, 2024)Chromosomal inversions may play a central role in speciation given their ability to locally reduce recombination and therefore genetic exchange between diverging populations. We analyzed long- and short-read whole-genome ... -
Environmental factors modulating cold tolerance, gene expression and metabolism in Drosophila montana
Vesala, Laura (University of Jyväskylä, 2011) -
Cold adaptation drives population genomic divergence in the ecological specialist, Drosophila montana
Wiberg, R. A. W.; Tyukmaeva, V.; Hoikkala, A.; Ritchie, M. G.; Kankare, M. (Wiley, 2021)Detecting signatures of ecological adaptation in comparative genomics is challenging, but analysing population samples with characterised geographic distributions, such as clinal variation, can help identify genes showing ... -
Inter and intraspecific genomic divergence in Drosophila montana shows evidence for cold adaptation
Parker, Darren; Wiberg, R. Axel W.; Trivedi, Urmi; Tyukmaeva, Venera; Gharbi, Karim; Butlin, Roger K.; Hoikkala, Anneli; Kankare, Maaria; Ritchie, Michael G. (Oxford University Press, 2018)The genomes of species that are ecological specialists will likely contain signatures of genomic adaptation to their niche. However, distinguishing genes related to ecological specialism from other sources of selection and ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.