Näytä suppeat kuvailutiedot

dc.contributor.authorKarppinen, Santeri
dc.contributor.authorEne, Liviu
dc.contributor.authorEngberg Sundström, Lovisa
dc.contributor.authorKarvanen, Juha
dc.date.accessioned2024-10-15T09:17:04Z
dc.date.available2024-10-15T09:17:04Z
dc.date.issued2024
dc.identifier.citationKarppinen, S., Ene, L., Engberg Sundström, L., & Karvanen, J. (2024). Planning cost-effective operational forest inventories. <i>Biometrics</i>, <i>80</i>(3), Article ujae104. <a href="https://doi.org/10.1093/biomtc/ujae104" target="_blank">https://doi.org/10.1093/biomtc/ujae104</a>
dc.identifier.otherCONVID_243227549
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/97405
dc.description.abstractWe address a Bayesian two-stage decision problem in operational forestry where the inner stage considers scheduling the harvesting to fulfill demand targets and the outer stage considers selecting the accuracy of pre-harvest inventories that are used to estimate the timber volumes of the forest tracts. The higher accuracy of the inventory enables better scheduling decisions but also implies higher costs. We focus on the outer stage, which we formulate as a maximization of the posterior value of the inventory decision under a budget constraint. The posterior value depends on the solution to the inner stage problem and its computation is analytically intractable, featuring an NP-hard binary optimization problem within a high-dimensional integral. In particular, the binary optimization problem is a special case of a generalized quadratic assignment problem. We present a practical method that solves the outer stage problem with an approximation which combines Monte Carlo sampling with a greedy, randomized method for the binary optimization problem. We derive inventory decisions for a dataset of 100 Swedish forest tracts across a range of inventory budgets and estimate the value of the information to be obtained.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.ispartofseriesBiometrics
dc.rightsCC BY 4.0
dc.subject.otherBayesian modeling
dc.subject.otherdecision making
dc.subject.otherforestry
dc.subject.otherquadratic assignment problem
dc.subject.otherscheduling
dc.subject.othervalue of information
dc.titlePlanning cost-effective operational forest inventories
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202410156273
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0006-341X
dc.relation.numberinseries3
dc.relation.volume80
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumberPWS 2022.0008
dc.subject.ysometsätalous
dc.subject.ysopäätöksenteko
dc.subject.ysobayesilainen menetelmä
dc.subject.ysovuoronnus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p1861
jyx.subject.urihttp://www.yso.fi/onto/yso/p8743
jyx.subject.urihttp://www.yso.fi/onto/yso/p17803
jyx.subject.urihttp://www.yso.fi/onto/yso/p28371
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1093/biomtc/ujae104
dc.relation.funderPeter Wallenberg Foundationen
dc.relation.funderPeter Wallenberg Foundationfi
jyx.fundingprogramOthersen
jyx.fundingprogramMuutfi
jyx.fundinginformationThe work has been funded by Peter Wallenberg Foundation (grant number 2022.0008). The research is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization) of the University of Jyväskylä.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0