dc.contributor.author | Karppinen, Santeri | |
dc.contributor.author | Ene, Liviu | |
dc.contributor.author | Engberg Sundström, Lovisa | |
dc.contributor.author | Karvanen, Juha | |
dc.date.accessioned | 2024-10-15T09:17:04Z | |
dc.date.available | 2024-10-15T09:17:04Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Karppinen, S., Ene, L., Engberg Sundström, L., & Karvanen, J. (2024). Planning cost-effective operational forest inventories. <i>Biometrics</i>, <i>80</i>(3), Article ujae104. <a href="https://doi.org/10.1093/biomtc/ujae104" target="_blank">https://doi.org/10.1093/biomtc/ujae104</a> | |
dc.identifier.other | CONVID_243227549 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/97405 | |
dc.description.abstract | We address a Bayesian two-stage decision problem in operational forestry where the inner stage considers scheduling the harvesting to fulfill demand targets and the outer stage considers selecting the accuracy of pre-harvest inventories that are used to estimate the timber volumes of the forest tracts. The higher accuracy of the inventory enables better scheduling decisions but also implies higher costs. We focus on the outer stage, which we formulate as a maximization of the posterior value of the inventory decision under a budget constraint. The posterior value depends on the solution to the inner stage problem and its computation is analytically intractable, featuring an NP-hard binary optimization problem within a high-dimensional integral. In particular, the binary optimization problem is a special case of a generalized quadratic assignment problem. We present a practical method that solves the outer stage problem with an approximation which combines Monte Carlo sampling with a greedy, randomized method for the binary optimization problem. We derive inventory decisions for a dataset of 100 Swedish forest tracts across a range of inventory budgets and estimate the value of the information to be obtained. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Oxford University Press | |
dc.relation.ispartofseries | Biometrics | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Bayesian modeling | |
dc.subject.other | decision making | |
dc.subject.other | forestry | |
dc.subject.other | quadratic assignment problem | |
dc.subject.other | scheduling | |
dc.subject.other | value of information | |
dc.title | Planning cost-effective operational forest inventories | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202410156273 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0006-341X | |
dc.relation.numberinseries | 3 | |
dc.relation.volume | 80 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2024. Published by Oxford University Press on behalf of The International Biometric Society | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | PWS 2022.0008 | |
dc.subject.yso | metsätalous | |
dc.subject.yso | päätöksenteko | |
dc.subject.yso | bayesilainen menetelmä | |
dc.subject.yso | vuoronnus | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1861 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8743 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17803 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28371 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1093/biomtc/ujae104 | |
dc.relation.funder | Peter Wallenberg Foundation | en |
dc.relation.funder | Peter Wallenberg Foundation | fi |
jyx.fundingprogram | Others | en |
jyx.fundingprogram | Muut | fi |
jyx.fundinginformation | The work has been funded by Peter Wallenberg Foundation (grant number 2022.0008). The research is related to the thematic research area DEMO (Decision Analytics utilizing Causal Models and Multiobjective Optimization) of the University of Jyväskylä. | |
dc.type.okm | A1 | |