Comparative assessment of heel rise detection for consistent gait phase separation
Salminen, M., Perttunen, J., Avela, J., & Vehkaoja, A. (2024). Comparative assessment of heel rise detection for consistent gait phase separation. Heliyon, 10(13), Article e33546. https://doi.org/10.1016/j.heliyon.2024.e33546
Published in
HeliyonDate
2024Copyright
© 2024 the Authors
Background
Accurate identification of gait events is crucial to reliable gait analysis. Heel rise, a key event marking the transition from mid-stance to terminal stance, poses challenges in precise detection due to its gradual nature. This leads to variability in accuracy across studies utilizing diverse measuring techniques.
Research Question
How do different HR detection methods compare when assessed against the underlying heel motion pattern and visual detection across varying speed, footwear conditions, and individuals?
Methods
Leveraging data from over 10,000 strides in diverse scenarios with 15 healthy subjects, we evaluated methods based on measurements from optical motion capture (OMC), force plates, and shank-mounted inertial measurement units (IMUs). The evaluation of these methods included an assessment of their precision and consistency with the heel marker’s motion pattern and agreement with visually detected heel rise.
Results
OMC-based heel rise detection methods, utilizing the heel marker's vertical acceleration and jerk, consistently identified the same point in the heel motion pattern, outperforming velocity-based methods and our new position-based method resembling traditional footswitch-based heel rise detection. Variability in velocity and position-based methods derives from subtle heel rise variations after mid-stance, exhibiting individual differences. Our proposed IMU-based methods show promise by closely matching OMC-based accuracy.
Significance
The results have significant implications for gait analysis, providing insights into heel rise event detection's complexities. Accurate HR identification is crucial for gait phase separation, and our findings, especially with the robust heel marker’s jerk-based method, enhance precision and consistency across walking conditions. Moreover, our successful development and validation of IMU-based algorithm offer cost-effective and mobile alternative for HR detection, expanding their potential use in comprehensive gait analysis.
...
Publisher
ElsevierISSN Search the Publication Forum
2405-8440Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/220838007
Metadata
Show full item recordCollections
- Liikuntatieteiden tiedekunta [3124]
License
Related items
Showing items with similar title or keywords.
-
A novel method for accurate division of the gait cycle into seven phases using shank angular velocity
Salminen, Mikko; Perttunen, Jarmo; Avela, Janne; Vehkaoja, Antti (Elsevier, 2024)Background Accurate detection of gait events is crucial for gait analysis, enabling the assessment of gait patterns and abnormalities. Inertial measurement unit (IMU) sensors have gained traction for event detection, ... -
The reliability of measuring medial gastrocnemius muscle-tendon unit lengths during gait
Cenni, Francesco; Schless, Simon-Henri; Adams, Heleen; Bar-On, Lynn; Desloovere, Kaat (Elsevier BV, 2021)Background Ultrasound imaging combined with 3D motion analysis allows for in-vivo assessment of muscle-tendon unit lengths during gait. The clinical relevance of analysing the medial gastrocnemius (MG) and Achilles ... -
Comparison of body segment models for female high jumpers utilising DXA images
Virmavirta, Mikko; Isolehto, Juha (Elsevier BV, 2022)In motion analysis of sport competitions, the question is often about the most convenient choice for defining the segment endpoints when no visible landmarks can be used. The purpose of the present study was to determine ... -
Wearing an ultrasound probe during walking does not influence lower limb joint kinematics in adolescents with cerebral palsy and typically developing peers
Cenni, Francesco; Alexander, Nathalie; Laatikainen-Raussi, Iida; Sukanen, Maria; Finni, Taija (Elsevier, 2024)Background Enhancing traditional three-dimensional gait analysis with a portable ultrasound device at the lower-limb muscle-tendon level enables direct measurement of muscle and tendon lengths during walking. However, it ... -
Estimating the mechanical cost of transport in human walking with a simple kinematic data-driven mechanical model
Katwal, Parvat; Jaiswal, Suraj; Jiang, Dezhi; Pyrhönen, Lauri; Tuomisto, Jenni; Rantalainen, Timo; Schwab, Arend L.; Mikkola, Aki (Public Library of Science, 2024)This work utilizes a simplified, streamlined approach to study the mechanical cost of transport in human walking. Utilizing the kinematic motion data of the center of mass, velocities and accelerations are determined using ...