Sobolev homeomorphic extensions from two to three dimensions
Hencl, S., Koski, A., & Onninen, J. (2024). Sobolev homeomorphic extensions from two to three dimensions. Journal of Functional Analysis, 286(9), Article 110371. https://doi.org/10.1016/j.jfa.2024.110371
Julkaistu sarjassa
Journal of Functional AnalysisPäivämäärä
2024Tekijänoikeudet
© 2024 The Authors. Published by Elsevier Inc.
We study the basic question of characterizing which boundary homeomorphisms of the unit sphere can be extended to a Sobolev homeomorphism of the interior in 3D space. While the planar variants of this problem are well-understood, completely new and direct ways of constructing an extension are required in 3D. We prove, among other things, that a Sobolev homeomorphism φ: R 2 onto −−→ R 2 in W1,p loc (R 2 , R 2 ) for some p ∈ [1, ∞) admits a homeomorphic extension h: R 3 onto −−→ R 3 in W1,q loc (R 3 , R 3 ) for 1 ⩽ q < 3 2 p. Such an extension result is nearly sharp, as the bound q = 3 2 p cannot be improved due to the Hölder embedding. The case q = 3 gains an additional interest as it also provides an L 1 -variant of the celebrated Beurling-Ahlfors quasiconformal extension result.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0022-1236Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/207192386
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Bi-Sobolev Extensions
Koski, Aleksis; Onninen, Jani (Springer, 2023)We give a full characterization of circle homeomorphisms which admit a homeomorphic extension to the unit disk with finite bi-Sobolev norm. As a special case, a bi-conformal variant of the famous Beurling–Ahlfors extension ... -
Sobolev homeomorphic extensions onto John domains
Koskela, Pekka; Koski, Aleksis; Onninen, Jani (Elsevier Inc., 2020)Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the ... -
Sobolev homeomorphic extensions
Koski, Aleksis; Onninen, Jani (European Mathematical Society, 2021)Let X and Y be ℓ-connected Jordan domains, ℓ∈N, with rectifiable boundaries in the complex plane. We prove that any boundary homeomorphism φ:∂X→∂Y admits a Sobolev homeomorphic extension h:X¯→Y¯ in W1,1(X,C). If instead X ... -
The volume of the boundary of a Sobolev (p,q)-extension domain
Koskela, Pekka; Ukhlov, Alexander; Zhu, Zheng (Elsevier, 2022)Let n≥2 and $1\leq q<p><\fz$. We prove that if Ω⊂Rn is a Sobolev (p,q)-extension domain, with additional capacitory restrictions on boundary in the case q≤n−1, n>2, then |∂Ω|=0. In the case 1≤q0.</p> -
Dimension estimates for the boundary of planar Sobolev extension domains
Lučić, Danka; Rajala, Tapio; Takanen, Jyrki (Walter de Gruyter GmbH, 2023)We prove an asymptotically sharp dimension upper-bound for the boundary of bounded simply-connected planar Sobolev W1,pW1,p -extension domains via the weak mean porosity of the boundary. The sharpness of our estimate is ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.