Näytä suppeat kuvailutiedot

dc.contributor.authorRostami, Hossein
dc.contributor.authorValio, Johanna
dc.contributor.authorSuominen, Pekka
dc.contributor.authorTynjälä, Pekka
dc.contributor.authorLassi, Ulla
dc.date.accessioned2024-08-21T05:52:58Z
dc.date.available2024-08-21T05:52:58Z
dc.date.issued2024
dc.identifier.citationRostami, H., Valio, J., Suominen, P., Tynjälä, P., & Lassi, U. (2024). Advancements in cathode technology, recycling strategies, and market dynamics : A comprehensive review of sodium ion batteries. <i>Chemical Engineering Journal</i>, <i>495</i>, Article 153471. <a href="https://doi.org/10.1016/j.cej.2024.153471" target="_blank">https://doi.org/10.1016/j.cej.2024.153471</a>
dc.identifier.otherCONVID_220841213
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96695
dc.description.abstractThe rising demand for sodium-ion batteries (SIBs) in commercial applications emphasizes the importance of meeting commercial criteria. Despite their potential, SIBs encounter challenges related to specific energy, cycling life, and specific power due to the unique characteristics of sodium ions. Design strategies, surface engineering, and structural modifications for cathode materials have been devised to improve the electrochemical performance of SIBs. In SIBs, the energy density primarily depends on the choice of cathode materials. Common cathode materials nowadays include transition metal oxides, polyanionic compounds, and Prussian blue analogs (PBAs). Enhancing these materials through targeted modifications to overcome their limitations is crucial for transitioning them from lab-scale to practical use. However, there are still some challenges to address before cathode materials can be effectively utilized for large-scale energy storage in SIBs. Recycling spent SIBs poses significant economic and environmental challenges, particularly compared to lithium-ion batteries (LIBs). Despite progress in cathode materials, thorough environmental assessments and detailed inventory data are lacking for SIBs. The early stage of their development restricts metal recycling in SIBs, underscoring the significance of end-of-life treatment. Pyrometallurgy and hydrometallurgy are commonly employed for metal recovery, with pyrometallurgy favored for SIBs due to reduced sodium evaporation risks. The marketing and commercialization trends in SIBs reflect the growing demand for renewable energy solutions. SIBs, with their potential for grid-scale energy storage, are expected to support the expansion of renewable energy infrastructure. However, overcoming technological challenges and reducing costs are key to SIB commercialization. In this regard, startups are playing a significant role in advancing SIB technologies for large-scale energy storage applications. The collaboration between companies and advancements in manufacturing facilities are driving SIB production, marking substantial progress towards commercialization. This paper aims to provide a comprehensive review of the current research and advancements in SIB technology.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesChemical Engineering Journal
dc.rightsCC BY 4.0
dc.subject.othersodium-ion battery
dc.subject.othercathode materials
dc.subject.otherrecycling
dc.subject.othermaterial recovery
dc.subject.othersustainability
dc.titleAdvancements in cathode technology, recycling strategies, and market dynamics : A comprehensive review of sodium ion batteries
dc.typereview article
dc.identifier.urnURN:NBN:fi:jyu-202408215589
dc.contributor.laitosKokkolan yliopistokeskus Chydeniusfi
dc.contributor.laitosKokkola University Consortium Chydeniusen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.description.reviewstatuspeerReviewed
dc.relation.issn1385-8947
dc.relation.volume495
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s). Published by Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoraaka-ainevarat
dc.subject.ysokestävä kehitys
dc.subject.ysokierrätys
dc.subject.ysoparistot
dc.subject.ysoraaka-aineet
dc.subject.ysoakut
dc.subject.ysovihreä kemia
dc.subject.ysotalteenotto
dc.subject.ysoenergiateknologia
dc.subject.ysonatrium
dc.subject.ysoelektrodit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p16883
jyx.subject.urihttp://www.yso.fi/onto/yso/p8470
jyx.subject.urihttp://www.yso.fi/onto/yso/p5268
jyx.subject.urihttp://www.yso.fi/onto/yso/p2307
jyx.subject.urihttp://www.yso.fi/onto/yso/p3443
jyx.subject.urihttp://www.yso.fi/onto/yso/p2306
jyx.subject.urihttp://www.yso.fi/onto/yso/p12401
jyx.subject.urihttp://www.yso.fi/onto/yso/p11190
jyx.subject.urihttp://www.yso.fi/onto/yso/p10947
jyx.subject.urihttp://www.yso.fi/onto/yso/p8414
jyx.subject.urihttp://www.yso.fi/onto/yso/p14077
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.cej.2024.153471
jyx.fundinginformationThis work was supported by the Ministry of Education and Culture (Grant agreement number OKM/32/524/2022). Academy of Finland, Govermat project (grant no 346726) is acknowledged for financial support. U.L. acknowledges Finnish Research Impact Foundation for Tandem Industry Academy professorship funding in 2023-2025.
dc.type.okmA2


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0