Näytä suppeat kuvailutiedot

dc.contributor.authorNiemelä, Marko
dc.contributor.authorvon Bonsdorff, Mikaela
dc.contributor.authorÄyrämö, Sami
dc.contributor.authorKärkkäinen, Tommi
dc.date.accessioned2024-08-16T12:26:19Z
dc.date.available2024-08-16T12:26:19Z
dc.date.issued2024
dc.identifier.citationNiemelä, M., von Bonsdorff, M., Äyrämö, S., & Kärkkäinen, T. (2024). Classification of dementia from spoken speech using feature selection and the bag of acoustic words model. <i>Applied Computing and Intelligence</i>, <i>4</i>(1), 45-65. <a href="https://doi.org/10.3934/aci.2024004" target="_blank">https://doi.org/10.3934/aci.2024004</a>
dc.identifier.otherCONVID_233334862
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96655
dc.description.abstractMemory disorders and dementia are a central factor in the decline of functioning and daily activities in older individuals. The workload related to standardized speech tests in clinical settings has led to a growing emphasis on developing automatic machine learning techniques for analyzing naturally spoken speech. This study presented a bag of acoustic words approach for distinguishing dementia patients from control individuals based on audio speech recordings. In this approach, each individual's speech was segmented into voiced periods, and these segments were characterized by acoustic features using the open-source openSMILE library. Word histogram representations were formed from the characterized speech segments of each speaker, which were used for classifying subjects. The formation of word histograms involved a clustering phase where feature vectors were quantized. It is well-known that partitional clustering involves instability in clustering results due to the selection of starting points, which can cause variability in classification outcomes. This study aimed to address instability by utilizing robust K-spatial-medians clustering, efficient K-means clustering initialization, and selecting the smallest clustering error from repeated clusterings. Additionally, the study employed feature selection based on the Wilcoxon signed-rank test to achieve computational efficiency in the methods. The results showed that it is possible to achieve a consistent 75% classification accuracy using only twenty-five features, both with the external ADReSS 2020 test data and through leave-one-subject-out cross-validation of the entire dataset. The results rank at the top compared to international research, where the same dataset and only acoustic features have been used to diagnose patients.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)
dc.relation.ispartofseriesApplied Computing and Intelligence
dc.rightsCC BY 4.0
dc.subject.otherAlzheimer
dc.subject.otherclassification
dc.subject.otherspontaneous speech
dc.subject.otheracoustic features
dc.subject.otherbag of acoustic words
dc.titleClassification of dementia from spoken speech using feature selection and the bag of acoustic words model
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202408165539
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosLiikuntatieteellinen tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosFaculty of Sport and Health Sciencesen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange45-65
dc.relation.issn2771-392X
dc.relation.numberinseries1
dc.relation.volume4
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber349336
dc.subject.ysoikääntyminen
dc.subject.ysomuistisairaudet
dc.subject.ysodementia
dc.subject.ysoAlzheimerin tauti
dc.subject.ysopuhe (puhuminen)
dc.subject.ysoikääntyneet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5056
jyx.subject.urihttp://www.yso.fi/onto/yso/p22037
jyx.subject.urihttp://www.yso.fi/onto/yso/p1711
jyx.subject.urihttp://www.yso.fi/onto/yso/p8412
jyx.subject.urihttp://www.yso.fi/onto/yso/p2492
jyx.subject.urihttp://www.yso.fi/onto/yso/p2433
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3934/aci.2024004
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThe work of the first Author (MN) was supported by the Finnish Cultural Foundation (Grant Number 30231766). The work of the second author (MvB) was supported by the Samfundet Folkhalsan, and the Research Council of Finland (Grant Number 349336).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0