Show simple item record

dc.contributor.authorHyttinen, Noora
dc.contributor.authorLi, Linjie
dc.contributor.authorHallquist, Mattias
dc.contributor.authorWu, Cheng
dc.date.accessioned2024-08-15T12:54:36Z
dc.date.available2024-08-15T12:54:36Z
dc.date.issued2024
dc.identifier.citationHyttinen, N., Li, L., Hallquist, M., & Wu, C. (2024). Machine Learning Model to Predict Saturation Vapor Pressures of Atmospheric Aerosol Constituents. <i>ACS - ES & T Air</i>, <i>Early online</i>. <a href="https://doi.org/10.1021/acsestair.4c00113" target="_blank">https://doi.org/10.1021/acsestair.4c00113</a>
dc.identifier.otherCONVID_233285434
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96632
dc.description.abstractWe present a novel machine learning (ML) model for predicting saturation vapor pressures (psat), a physical property of use to describe transport, distribution, mass transfer, and fate of environmental toxins and contaminants. The ML model uses σ-profiles from the conductor-like screening model (COSMO) as molecular descriptors. The main advantages in using σ-profiles instead of other types of molecular representations are the relatively small size of the descriptor and the fact that the addition of new elements does not affect the size of the descriptor. The ML model was trained separately for liquid and solid compounds using experimental vapor pressures at various temperatures. The 95% confidence intervals of the error in the liquid- and solid-phase log10(psat/Pa) are 1.02 and 1.4, respectively. Especially our solid-phase model outperforms all group-contribution models in predicting experimental sublimation pressures of solid compounds. To demonstrate its applicability, the model was used to predict psat of atmospherically relevant species, and the values were compared with those obtained from a new experimental method. Here, our model provided a tool for a better description of this critical property and gave a higher confidence in the measurements.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofseriesACS - ES & T Air
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherCOSMO
dc.subject.otherextreme minimal learning machine
dc.subject.otherσ-profile
dc.subject.otherliquid
dc.subject.othersolid
dc.subject.othervolatility
dc.titleMachine Learning Model to Predict Saturation Vapor Pressures of Atmospheric Aerosol Constituents
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202408155516
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2837-1402
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber338171
dc.subject.ysoaerosolit
dc.subject.ysokoneoppiminen
dc.subject.ysoilman epäpuhtaudet
dc.subject.ysoilmakehä
dc.subject.ysomallintaminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p9802
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p3739
jyx.subject.urihttp://www.yso.fi/onto/yso/p5393
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1021/acsestair.4c00113
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundinginformationWe gratefully acknowledge the financial contribution from the Research Council of Finland, Grant No. 338171, and CSC-ITCenter for Science, Finland, for computational resources. We thank the Swedish Research Council VR (2023-04520). It is a contribution to the Swedish strategic research area ModElling the Regional and Global Earth system, MERGE.
datacite.isSupplementedBy.doihttps://doi.org/10.23729/f2b13fc5-b3d1-49b4-a895-53e994a8218a
datacite.isSupplementedByHyttinen, Noora. (2024). <i>Supplementary material for the article "Machine Learning Model to Predict Saturation Vapor Pressures of Atmospheric Aerosol Constituents"</i>. University of Jyväskylä. <a href="https://doi.org/https://doi.org/10.23729/f2b13fc5-b3d1-49b4-a895-53e994a8218a" target="_blank">https://doi.org/https://doi.org/10.23729/f2b13fc5-b3d1-49b4-a895-53e994a8218a</a>.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0