Show simple item record

dc.contributor.authorAlmeida, Gabriel Magno de Freitas
dc.contributor.authorRavantti, Janne
dc.contributor.authorGrdzelishvili, Nino
dc.contributor.authorKakabadze, Elene
dc.contributor.authorBakuradze, Nata
dc.contributor.authorJavakhishvili, Elene
dc.contributor.authorMegremis, Spyridon
dc.contributor.authorChanishvili, Nina
dc.contributor.authorPapadopoulos, Nikolaos
dc.contributor.authorSundberg, Lotta-Riina
dc.date.accessioned2024-08-07T12:02:44Z
dc.date.available2024-08-07T12:02:44Z
dc.date.issued2024
dc.identifier.citationAlmeida, G. M. D. F., Ravantti, J., Grdzelishvili, N., Kakabadze, E., Bakuradze, N., Javakhishvili, E., Megremis, S., Chanishvili, N., Papadopoulos, N., & Sundberg, L.-R. (2024). Relevance of the bacteriophage adherence to mucus model for Pseudomonas aeruginosa phages. <i>Microbiology Spectrum</i>, <i>Early online</i>. <a href="https://doi.org/10.1128/spectrum.03520-23" target="_blank">https://doi.org/10.1128/spectrum.03520-23</a>
dc.identifier.otherCONVID_220851185
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96547
dc.description.abstractPseudomonas aeruginosa infections are getting increasingly serious as antimicrobial resistance spreads. Phage therapy may be a solution to the problem, especially if improved by current advances on phage-host studies. As a mucosal pathogen, we hypothesize that P. aeruginosa and its phages are linked to the bacteriophage adherence to mucus (BAM) model. This means that phage-host interactions could be influenced by mucin presence, impacting the success of phage infections on the P. aeruginosa host and consequently leading to the protection of the metazoan host. By using a group of four different phages, we tested three important phenotypes associated with the BAM model: phage binding to mucin, phage growth in mucin-exposed hosts, and the influence of mucin on CRISPR immunity of the bacterium. Three of the tested phages significantly bound to mucin, while two had improved growth rates in mucin-exposed hosts. Improved phage growth was likely the result of phage exploitation of mucin-induced physiological changes in the host. We could not detect CRISPR activity in our system but identified two putative anti-CRISPR proteins coded by the phage. Overall, the differential responses seen for the phages tested show that the same bacterial species can be targeted by mucosal-associated phages or by phages not affected by mucus presence. In conclusion, the BAM model is relevant for phage-bacterium interactions in P. aeruginosa, opening new possibilities to improve phage therapy against this important pathogen by considering mucosal interaction dynamics.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Society for Microbiology
dc.relation.ispartofseriesMicrobiology Spectrum
dc.rightsCC BY 4.0
dc.subject.otherbacteriophage
dc.subject.othermucus
dc.subject.otherPseudomonas
dc.subject.otherBAM model
dc.titleRelevance of the bacteriophage adherence to mucus model for Pseudomonas aeruginosa phages
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202408075423
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2165-0497
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber314939
dc.relation.grantnumber346772
dc.subject.ysolimakalvot
dc.subject.ysotaudinaiheuttajat
dc.subject.ysobakteerit
dc.subject.ysoantibioottiresistenssi
dc.subject.ysofagiterapia
dc.subject.ysobakteriofagit
dc.subject.ysovirukset
dc.subject.ysopatogeneesi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p9294
jyx.subject.urihttp://www.yso.fi/onto/yso/p8822
jyx.subject.urihttp://www.yso.fi/onto/yso/p1749
jyx.subject.urihttp://www.yso.fi/onto/yso/p29640
jyx.subject.urihttp://www.yso.fi/onto/yso/p29496
jyx.subject.urihttp://www.yso.fi/onto/yso/p25303
jyx.subject.urihttp://www.yso.fi/onto/yso/p1123
jyx.subject.urihttp://www.yso.fi/onto/yso/p22207
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1128/spectrum.03520-23
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis study was funded by Academy of Finland (#314939 and #346992 for L.-R.S.) and the Centre for New Antibacterial Strategies (CANS) of the Arctic University of Norway (project ID #2520855 for G.M.D.F.A.). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 767015.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0