dc.contributor.author | Hirvonen, Henry | |
dc.contributor.author | Eskola, Kari J. | |
dc.contributor.author | Niemi, Harri | |
dc.contributor.editor | Bellwied, R. | |
dc.contributor.editor | Geurts, F. | |
dc.contributor.editor | Rapp, R. | |
dc.contributor.editor | Ratti, C. | |
dc.contributor.editor | Timmins, A. | |
dc.contributor.editor | Vitev, I. | |
dc.date.accessioned | 2024-08-07T09:30:40Z | |
dc.date.available | 2024-08-07T09:30:40Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Hirvonen, H., Eskola, K. J., & Niemi, H. (2024). Deep learning for flow observables in high energy heavy-ion collisions. In R. Bellwied, F. Geurts, R. Rapp, C. Ratti, A. Timmins, & I. Vitev (Eds.), <i>30th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2023)</i> (Article 02002). EDP Sciences. EPJ Web of Conferences, 296. <a href="https://doi.org/10.1051/epjconf/202429602002" target="_blank">https://doi.org/10.1051/epjconf/202429602002</a> | |
dc.identifier.other | CONVID_220899754 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/96537 | |
dc.description.abstract | We demonstrate how deep convolutional neural networks can be trained to predict 2+1 D hydrodynamic simulation results for flow coefficients, mean-pT and charged particle multiplicity from the initial energy density profile. We show that this method provides results that are accurate enough, so that one can use neural networks to reliably estimate multi-particle flow correlators. Additionally, we train networks that can take any model parameter as an additional input and demonstrate with a few examples that the accuracy remains good. The usage of neural networks can reduce the computation time needed in performing Bayesian analyses with multi-particle flow correlators by many orders of magnitude. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | EDP Sciences | |
dc.relation.ispartof | 30th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2023) | |
dc.relation.ispartofseries | EPJ Web of Conferences | |
dc.rights | CC BY 4.0 | |
dc.title | Deep learning for flow observables in high energy heavy-ion collisions | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-202408075413 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-2-7598-9126-9 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2101-6275 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions | |
dc.relation.grantnumber | 330448 | |
dc.relation.grantnumber | 824093 | |
dc.relation.grantnumber | 824093 | |
dc.relation.grantnumber | 835105 | |
dc.relation.grantnumber | 835105 | |
dc.relation.grantnumber | 346325 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/824093/EU//STRONG-2020 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/835105/EU//YoctoLHC | |
dc.subject.yso | hiukkasfysiikka | |
dc.subject.yso | simulointi | |
dc.subject.yso | neuroverkot | |
dc.subject.yso | syväoppiminen | |
dc.subject.yso | koneoppiminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15576 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4787 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7292 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39324 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1051/epjconf/202429602002 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | RIA Research and Innovation Action, H2020 | en |
jyx.fundingprogram | ERC Advanced Grant | en |
jyx.fundingprogram | Centre of Excellence, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | RIA Research and Innovation Action, H2020 | fi |
jyx.fundingprogram | ERC Advanced Grant | fi |
jyx.fundingprogram | Huippuyksikkörahoitus, SA | fi |
jyx.fundinginformation | We acknowledge the financial support from the Jenny and Antti Wihuri Foundation, and the Academy of Finland project 330448. This research was funded as a part of the Center of Excellence in Quark Matter of the Academy of Finland (project 346325), the European Research Council project ERC-2018-ADG-835105 YoctoLHC, and the European Union’s Horizon 2020 research and innovation program under grant agreement No 824093 (STRONG-2020). The Finnish IT Center for Science (CSC) is acknowledged for the computing time through the Project jyy2580 | |
dc.type.okm | A4 | |