Deep learning for flow observables in ultrarelativistic heavy-ion collisions
Hirvonen, H., Eskola, K. J., & Niemi, H. (2023). Deep learning for flow observables in ultrarelativistic heavy-ion collisions. Physical Review C, 108, Article 034905. https://doi.org/10.1103/PhysRevC.108.034905
Julkaistu sarjassa
Physical Review CPäivämäärä
2023Tekijänoikeudet
© Authors. Published by the American Physical Society. Funded by SCOAP3.
2023:22 | 2024:43 | 2025:2
We train a deep convolutional neural network to predict hydrodynamic results for flow coefficients, average transverse momenta, and charged particle multiplicities in ultrarelativistic heavy-ion collisions from the initial energy density profiles. We show that the neural network can be trained accurately enough so that it can reliably predict the hydrodynamic results for the flow coefficients and, remarkably, also their correlations like normalized symmetric cumulants, mixed harmonic cumulants, and flow-transverse-momentum correlations. At the same time the required computational time decreases by several orders of magnitude. To demonstrate the advantage of the significantly reduced computation time, we generate 107 initial energy density profiles from which we predict the flow observables using the neural network, which is trained using 5×103, and validated using 9×104 events per collision energy. We then show that increasing the number of collision events from 9×104 to 107 can have significant effects on certain statistics-expensive flow correlations, which should be taken into account when using these correlators as constraints in the determination of the quantum chromodynamics matter properties.
...
Julkaisija
American Physical Society (APS)ISSN Hae Julkaisufoorumista
2469-9985Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/193445137
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Huippuyksikkörahoitus, SA; Akatemiahanke, SALisätietoja rahoituksesta
We acknowledge the financial support from the Jenny and Antti Wihuri Foundation, and the Academy of Finland Project No. 330448 (K.J.E.). This research was funded as a part of the Center of Excellence in Quark Matter of the Academy of Finland (Project No. 346325). This research is part of the European Research Council Project No. ERC-2018-ADG-835105 YoctoLHC. The Finnish IT Center for Science (CSC) is acknowledged for the computing time through Project No. jyy2580. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Deep learning for flow observables in high energy heavy-ion collisions
Hirvonen, Henry; Eskola, Kari J.; Niemi, Harri (EDP Sciences, 2024)We demonstrate how deep convolutional neural networks can be trained to predict 2+1 D hydrodynamic simulation results for flow coefficients, mean-pT and charged particle multiplicity from the initial energy density profile. ... -
Effects of saturation and fluctuating hotspots for flow observables in ultrarelativistic heavy-ion collisions
Hirvonen, Henry; Kuha, Mikko; Auvinen, Jussi; Eskola, Kari J.; Kanakubo, Yuuka; Niemi, Harri (American Physical Society (APS), 2024)We investigate the effects of saturation dynamics on midrapidity flow observables by adding fluctuating hotspots into the novel Monte Carlo EKRT (MC-EKRT) event generator for high-energy nuclear collisions. We demonstrate ... -
Measurement of inclusive charged-particle jet production in pp and p-Pb collisions at √sNN=5.02 TeV
The ALICE collaboration (Springer Nature, 2024)Measurements of inclusive charged-particle jet production in pp and p-Pb collisions at center-of-mass energy per nucleon-nucleon collision √sNN=5.02 TeV and the corresponding nuclear modification factor RchjetpPb are ... -
Nucleon dissociation and incoherent J/ψ photoproduction on nuclei in ion ultraperipheral collisions at the CERN Large Hadron Collider
Guzey, Vadim; Strikman, M.; Zhalov, M. (American Physical Society, 2019)Using the general notion of cross section fluctuations in hadron-nucleus scattering at high energies, we derive an expression for the cross section of incoherent J / ψ photoproduction on heavy nuclei d σ γ A ... -
Anisotropic flow in Xe-Xe collisions at √sNN = 5.44 TeV
ALICE Collaboration (Elsevier B.V., 2018)The first measurements of anisotropic flow coefficients for vn mid-rapidity charged particles in Xe–Xe collisions at √sNN=5.44 TeV are presented. Comparing these measurements to those from Pb–Pb collisions at √sNN=5.02 ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.