Koeben 1/4-lause ja Haymanin-Wun lause
Tässä tutkielmassa osoitetaan päätuloksina Koeben 1/4-lause sekä Haymanin-Wun lause. Koeben 1/4 -lause kertoo, että analyyttinen injektio f ei voi kutistaa yksikkökiekkoa D pienemmäksi kuin yhteen neljäsosaan alkuperäisestä, kun funktio f häviää origossa ja derivaatan arvo origossa on 1. Haymanin-Wun lause puolestaan antaa käyrän φ-1(Ω ∩ L) pituudelle ylärajan 4π, kun Ω on yhdesti yhtenäinen kompleksitason alue, L on mielivaltainen aluetta Ω leikkaava suora ja φ on konformikuvaus yksikkökiekolta D alueelle Ω. Tutkielmassa esitellään aluksi hyödyllisiä aputuloksia sekä määritelmiä, joita tarvtaan myöhemmin toisten tulosten todistamiseksi. Osalle näistä aputuloksista esitellään myös todistukset. Tutkielman teorian pohjalla on tärkeässä roolissa konformikuvaukset, joten niihin tutustutaan aputulosten jälkeen ensimmäiseksi. Konformikuvauksista tarkastellaan esityisesti Möbius-kuvauksia, jotka ovat hyödyllinen konformikuvausten kategoria, minkä jälkeen esitellään kaksoissuhde sekä Möbius-kuvausten löytäminen sen avulla. Lisäksi todistetaan keskeinen konformikuvauksiin liittyvä tulos Riemannin kuvauslause, jonka nojalla mielivaltaiselta kompleksitason yhdesti yhtenäiseltä alueelta on olemassa konformikuvaus yksikkökiekolle D. Haymanin-Wun lauseen todistuksessa käytetään apuna hyperbolista ja pseudohyperbolista metriikkaa yksikkökiekossa D sekä harmonisen mitan ominaisuuksia. Näistä esitellään perusominaisuuksia sekä todistuksille tarpeelliset tulokset. Lisäksi osoitetaan Schwarzin lemma sekä Schwarzin-Pickin lause. Koeben 1/4-lauseen todistus puolestaan pohjaa konformiseen moduliin sekä sen ominaisuuksiin, erityisesti Grötzschin lauseeseen sekä polkuperheiden konformiseen moduliin annuluksessa. Tutkielmassa tarkastellaan myös kahdesti yhtenäisiä alueita sekä niiden välisiä konformikuvauksia.
...
Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29758]
License
Related items
Showing items with similar title or keywords.
-
Picardin lauseen todistaminen Harnackin epäyhtälön avulla
Kauppinen, Jussi (2020)Charles Emile Picardin mukaan nimetty Picardin lause ottaa kantaa kompleksisesti differentioituvien eli analyyttisten funktioiden käyttäytymiseen. Kyseinen lause on tutkielman päätulos. Tarkalleen lauseessa väitetään, että ... -
Konformisia ja lokaalisti konformisia kuvauksia
Jäntti, Pasi (2019)Tässä tutkielmassa perehdytään konformikuvauksiin liittyvään teoriaan. Erityisesti tarkastellaan konformikuvauksia eri kompleksitason alueiden välillä. Tutkielman yhtenä päätuloksena todistetaan Riemannin kuvauslause, jonka ... -
Konformikuvaukset ja hyperbolinen metriikka
Heimari, Eero (2021)Tutkielmassa esitellään konformikuvauksia ja niiden merkitystä hyperbolisen geometrian malleissa erityisesti hyperbolisen metriikan suhteen. Tutkielmassa esitellään Poincarén kiekkomallin hyperbolinen metriikka ja tämän ... -
Möbius-kuvaukset ja hyperbolinen geometria
Jääskeläinen, Jenny (2021)Tämä Pro Gradu tutkielma käsittelee Möbius-kuvauksia, hyperbolista geometriaa sekä näiden välisiä yhteyksiä. Tutkielman alussa perehdytään kompleksilukujen perusominaisuuksiin sekä tarkastellaan laajennettua kompleksitasoa, ... -
Riemann surfaces and Teichmüller theory
Ikonen, Toni (2017)Riemannin pinnat ja Teichmüller-teoriaa. Tämän työn päämääränä on määritellä Riemannin pintojen Teichmüller-avaruudet sekä tutkia niiden geometrisia ominaisuuksia. Ensin työssä kehitetään peiteavaruuksien ja toimintojen ...