Konformikuvaukset ja hyperbolinen metriikka
Authors
Date
2021Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
Tutkielmassa esitellään konformikuvauksia ja niiden merkitystä hyperbolisen geometrian malleissa erityisesti hyperbolisen metriikan suhteen. Tutkielmassa esitellään Poincarén kiekkomallin hyperbolinen metriikka ja tämän avulla määritellään hyperbolinen metriikka myös mielivaltaiselle yhdesti yhtenäiselle alueelle.
Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29106]
Related items
Showing items with similar title or keywords.
-
Quasiconformal geometry and removable sets for conformal mappings
Ikonen, Toni; Romney, Matthew (Hebrew University Magnes Press; Springer, 2022)We study metric spaces defined via a conformal weight, or more generally a measurable Finsler structure, on a domain Ω ⊂ ℝ2 that vanishes on a compact set E ⊂ Ω and satisfies mild assumptions. Our main question is to ... -
Duality of moduli in regular toroidal metric spaces
Lohvansuu, Atte (Finnish Mathematical Society, 2021)We generalize a result of Freedman and He [4, Theorem 2.5], concerning the duality of moduli and capacities in solid tori, to sufficiently regular metric spaces. This is a continuation of the work of the author and Rajala ... -
Two‐dimensional metric spheres from gluing hemispheres
Ikonen, Toni (Wiley-Blackwell, 2022)We study metric spheres (Z,dZ) obtained by gluing two hemispheres of S2 along an orientation-preserving homeomorphism g:S1→S1, where dZ is the canonical distance that is locally isometric to S2 off the seam. We show that ... -
The Choquet and Kellogg properties for the fine topology when p=1 in metric spaces
Lahti, Panu (Elsevier Masson, 2019)In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the ... -
A new Cartan-type property and strict quasicoverings when P = 1 in metric spaces
Lahti, Panu (Suomalainen tiedeakatemia, 2018)In a complete metric space that is equipped with a doubling measure and supports a Poincaré inequality, we prove a new Cartan-type property for the fine topology in the case p = 1. Then we use this property to prove the ...