Show simple item record

dc.contributor.authorJulin, Vesa
dc.contributor.authorLa Manna Domenico, Angelo
dc.date.accessioned2024-06-14T12:37:08Z
dc.date.available2024-06-14T12:37:08Z
dc.date.issued2024
dc.identifier.citationJulin, V., & La Manna Domenico, A. (2024). A Priori Estimates for the Motion of Charged Liquid Drop : A Dynamic Approach via Free Boundary Euler Equations. <i>Journal of Mathematical Fluid Mechanics</i>, <i>26</i>(3), Article 48. <a href="https://doi.org/10.1007/s00021-024-00883-2" target="_blank">https://doi.org/10.1007/s00021-024-00883-2</a>
dc.identifier.otherCONVID_220430003
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/95920
dc.description.abstractWe study the motion of charged liquid drop in three dimensions where the equations of motions are given by the Euler equations with free boundary with an electric field. This is a well-known problem in physics going back to the famous work by Rayleigh. Due to experiments and numerical simulations one may expect the charged drop to form conicalsingularities called Taylor cones, which we interpret as singularities of the flow. In this paper, we study the well-posednessof the problem and regularity of the solution. Our main theorem is a criterion which roughly states that if the flow remains C1,α-regular in shape and the velocity remains Lipschitz-continuous, then the flow remains smooth, i.e., C∞ in time and space, assuming that the initial data is smooth. Our main focus is on the regularity of the shape of the drop. Indeed, due to the appearance of Taylor cones, which are singularities with Lipschitz-regularity, we expect the C1,α-regularity assumption to be optimal. We also quantify the C∞-regularity via high order energy estimates which, in particular, impliesthe well-posedness of the problem.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesJournal of Mathematical Fluid Mechanics
dc.rightsCC BY 4.0
dc.subject.otherfluid mechanics
dc.subject.othereuler equations
dc.subject.otherregularity theory for incompressible fluids
dc.subject.otherfree boundary
dc.subject.othernon-local isoperimetric problem
dc.subject.otherrayleigh threshold
dc.titleA Priori Estimates for the Motion of Charged Liquid Drop : A Dynamic Approach via Free Boundary Euler Equations
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202406144686
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1422-6928
dc.relation.numberinseries3
dc.relation.volume26
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber314227
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysopisarat
dc.subject.ysonesteet
dc.subject.ysohydromekaniikka
dc.subject.ysosähkökentät
dc.subject.ysohydrodynamiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p25362
jyx.subject.urihttp://www.yso.fi/onto/yso/p4336
jyx.subject.urihttp://www.yso.fi/onto/yso/p12554
jyx.subject.urihttp://www.yso.fi/onto/yso/p8138
jyx.subject.urihttp://www.yso.fi/onto/yso/p10546
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00021-024-00883-2
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundinginformationOpen Access funding provided by University of Jyväskylä (JYU). The research was supported by the Academy of Finland grant 314227.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0