A quantitative reverse Faber-Krahn inequality for the first Robin eigenvalue with negative boundary parameter
Cito, S., & La Manna, D. A. (2021). A quantitative reverse Faber-Krahn inequality for the first Robin eigenvalue with negative boundary parameter. ESAIM : Control, Optimisation and Calculus of Variations, 27(Supplement), Article S23. https://doi.org/10.1051/cocv/2020079
Julkaistu sarjassa
ESAIM : Control, Optimisation and Calculus of VariationsPäivämäärä
2021Tekijänoikeudet
© EDP Sciences, SMAI 2021
The aim of this paper is to prove a quantitative form of a reverse Faber-Krahn type inequality for the first Robin Laplacian eigenvalue λβ with negative boundary parameter among convex sets of prescribed perimeter. In that framework, the ball is the only maximizer for λβ and the distance from the optimal set is considered in terms of Hausdorff distance. The key point of our stategy is to prove a quantitative reverse Faber-Krahn inequality for the first eigenvalue of a Steklov-type problem related to the original Robin problem.
Julkaisija
EDP SciencesISSN Hae Julkaisufoorumista
1292-8119Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/51961800
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkijan tutkimuskulut, SALisätietoja rahoituksesta
The second author was partially supported by the Academy of Finland grant 314227.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A two-phase problem with Robin conditions on the free boundary
Guarino Lo Bianco, Serena; La Manna, Domenico Angelo; Velichkov, Bozhidar (Les Éditions de l'École polytechnique, 2021)We study for the first time a two-phase free boundary problem in which the solution satisfies a Robin boundary condition. We consider the case in which the solution is continuous across the free boundary and we prove an ... -
Periodic Controls in Step 2 Strictly Convex Sub-Finsler Problems
Sachkov, Yuri L. (Pleiades Publishing, 2020)We consider control-linear left-invariant time-optimal problems on step 2 Carnot groups with a strictly convex set of control parameters (in particular, sub-Finsler problems). We describe all Casimirs linear in momenta on ... -
Game-Theoretic Approach to Hölder Regularity for PDEs Involving Eigenvalues of the Hessian
Blanc, Pablo; Han, Jeongmin; Parviainen, Mikko; Ruosteenoja, Eero (Springer, 2022) -
Optimization of the domain in elliptic variational inequalities
Neittaanmäki, Pekka; Sokolowski, J.; Zolesio, J. P. (University of Jyväskylä, 1986) -
Parameter identification for heterogeneous materials by optimal control approach with flux cost functionals
Haslinger, Jaroslav; Blaheta, Radim; Mäkinen, Raino A. E. (Elsevier, 2021)The paper deals with the identification of material parameters characterizing components in heterogeneous geocomposites provided that the interfaces separating different materials are known. We use the optimal control ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.