dc.contributor.author | Psyridou, Maria | |
dc.contributor.author | Prezja, Fabi | |
dc.contributor.author | Torppa, Minna | |
dc.contributor.author | Lerkkanen, Marja-Kristiina | |
dc.contributor.author | Poikkeus, Anna-Maija | |
dc.contributor.author | Vasalampi, Kati | |
dc.date.accessioned | 2024-06-06T07:40:36Z | |
dc.date.available | 2024-06-06T07:40:36Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Psyridou, M., Prezja, F., Torppa, M., Lerkkanen, M.-K., Poikkeus, A.-M., & Vasalampi, K. (2024). Machine learning predicts upper secondary education dropout as early as the end of primary school. <i>Scientific Reports</i>, <i>14</i>, Article 12956. <a href="https://doi.org/10.1038/s41598-024-63629-0" target="_blank">https://doi.org/10.1038/s41598-024-63629-0</a> | |
dc.identifier.other | CONVID_216135278 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/95600 | |
dc.description.abstract | Education plays a pivotal role in alleviating poverty, driving economic growth, and empowering individuals, thereby significantly influencing societal and personal development. However, the persistent issue of school dropout poses a significant challenge, with its effects extending beyond the individual. While previous research has employed machine learning for dropout classification, these studies often suffer from a short-term focus, relying on data collected only a few years into the study period. This study expanded the modeling horizon by utilizing a 13-year longitudinal dataset, encompassing data from kindergarten to Grade 9. Our methodology incorporated a comprehensive range of parameters, including students’ academic and cognitive skills, motivation, behavior, well-being, and officially recorded dropout data. The machine learning models developed in this study demonstrated notable classification ability, achieving a mean area under the curve (AUC) of 0.61 with data up to Grade 6 and an improved AUC of 0.65 with data up to Grade 9. Further data collection and independent correlational and causal analyses are crucial. In future iterations, such models may have the potential to proactively support educators’ processes and existing protocols for identifying at-risk students, thereby potentially aiding in the reinvention of student retention and success strategies and ultimately contributing to improved educational outcomes. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Nature Publishing Group | |
dc.relation.ispartofseries | Scientific Reports | |
dc.rights | CC BY 4.0 | |
dc.subject.other | machine learning | |
dc.subject.other | education dropout | |
dc.subject.other | longitudinal data | |
dc.subject.other | upper secondary education | |
dc.subject.other | comprehensive education | |
dc.subject.other | kindergarten | |
dc.subject.other | academic outcomes | |
dc.title | Machine learning predicts upper secondary education dropout as early as the end of primary school | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202406064360 | |
dc.contributor.laitos | Opettajankoulutuslaitos | fi |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Psykologian laitos | fi |
dc.contributor.laitos | Kasvatustieteiden laitos | fi |
dc.contributor.laitos | Department of Teacher Education | en |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.laitos | Department of Psychology | en |
dc.contributor.laitos | Department of Education | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2045-2322 | |
dc.relation.volume | 14 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2024 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 358490 | |
dc.relation.grantnumber | 284439 | |
dc.relation.grantnumber | 323773 | |
dc.relation.grantnumber | 313768 | |
dc.relation.grantnumber | 345196 | |
dc.relation.grantnumber | 268586 | |
dc.relation.grantnumber | 299506 | |
dc.relation.grantnumber | 353392 | |
dc.relation.grantnumber | 276239 | |
dc.relation.grantnumber | 292466 | |
dc.relation.grantnumber | 339418 | |
dc.relation.grantnumber | 335727 | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | koulupudokkaat | |
dc.subject.yso | päiväkodit | |
dc.subject.yso | toisen asteen koulutus | |
dc.subject.yso | perusopetus | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20706 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p282 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3387 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19327 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1038/s41598-024-63629-0 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Strategic research programmes, AoF | en |
jyx.fundingprogram | Research costs of Academy Research Fellow, AoF | en |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Research costs of Academy Research Fellow, AoF | en |
jyx.fundingprogram | Strategic research programmes, AoF | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Strategic research programmes, AoF | en |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Research profiles, AoF | en |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundingprogram | Strategic research programmes, AoF | en |
jyx.fundingprogram | Strategisen tutkimuksen ohjelmat STN, SA | fi |
jyx.fundingprogram | Akatemiatutkijan tutkimuskulut, SA | fi |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | Akatemiatutkijan tutkimuskulut, SA | fi |
jyx.fundingprogram | Strategisen tutkimuksen ohjelmat STN, SA | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Strategisen tutkimuksen ohjelmat STN, SA | fi |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | Profilointi, SA | fi |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundingprogram | Strategisen tutkimuksen ohjelmat STN, SA | fi |
jyx.fundinginformation | The First Steps Study was funded by by grants from the Academy of Finland (Grant numbers: 213486, 263891, 268586, 292466, 276239, 284439, and 313768). The School Path study was funded by grants from Academy of Finland (Grant numbers: 299506 and 323773).This research was also partly funded by the Strategic Research Council (SRC) established within the Academy of Finland (Grant numbers: 335625, 335727, 345196, 358490, and 358250 for the project CRITICAL and Grant numbers: 352648, 353392 for the project Right to Belong). In addition, Maria Psyridou was supported by the Academy of Finland (Grant number: 339418). | |
dc.type.okm | A1 | |