Show simple item record

dc.contributor.authorPsyridou, Maria
dc.contributor.authorPrezja, Fabi
dc.contributor.authorTorppa, Minna
dc.contributor.authorLerkkanen, Marja-Kristiina
dc.contributor.authorPoikkeus, Anna-Maija
dc.contributor.authorVasalampi, Kati
dc.date.accessioned2024-06-06T07:40:36Z
dc.date.available2024-06-06T07:40:36Z
dc.date.issued2024
dc.identifier.citationPsyridou, M., Prezja, F., Torppa, M., Lerkkanen, M.-K., Poikkeus, A.-M., & Vasalampi, K. (2024). Machine learning predicts upper secondary education dropout as early as the end of primary school. <i>Scientific Reports</i>, <i>14</i>, Article 12956. <a href="https://doi.org/10.1038/s41598-024-63629-0" target="_blank">https://doi.org/10.1038/s41598-024-63629-0</a>
dc.identifier.otherCONVID_216135278
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/95600
dc.description.abstractEducation plays a pivotal role in alleviating poverty, driving economic growth, and empowering individuals, thereby significantly influencing societal and personal development. However, the persistent issue of school dropout poses a significant challenge, with its effects extending beyond the individual. While previous research has employed machine learning for dropout classification, these studies often suffer from a short-term focus, relying on data collected only a few years into the study period. This study expanded the modeling horizon by utilizing a 13-year longitudinal dataset, encompassing data from kindergarten to Grade 9. Our methodology incorporated a comprehensive range of parameters, including students’ academic and cognitive skills, motivation, behavior, well-being, and officially recorded dropout data. The machine learning models developed in this study demonstrated notable classification ability, achieving a mean area under the curve (AUC) of 0.61 with data up to Grade 6 and an improved AUC of 0.65 with data up to Grade 9. Further data collection and independent correlational and causal analyses are crucial. In future iterations, such models may have the potential to proactively support educators’ processes and existing protocols for identifying at-risk students, thereby potentially aiding in the reinvention of student retention and success strategies and ultimately contributing to improved educational outcomes.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.ispartofseriesScientific Reports
dc.rightsCC BY 4.0
dc.subject.othermachine learning
dc.subject.othereducation dropout
dc.subject.otherlongitudinal data
dc.subject.otherupper secondary education
dc.subject.othercomprehensive education
dc.subject.otherkindergarten
dc.subject.otheracademic outcomes
dc.titleMachine learning predicts upper secondary education dropout as early as the end of primary school
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202406064360
dc.contributor.laitosOpettajankoulutuslaitosfi
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosPsykologian laitosfi
dc.contributor.laitosKasvatustieteiden laitosfi
dc.contributor.laitosDepartment of Teacher Educationen
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosDepartment of Psychologyen
dc.contributor.laitosDepartment of Educationen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2045-2322
dc.relation.volume14
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2024
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber358490
dc.relation.grantnumber284439
dc.relation.grantnumber323773
dc.relation.grantnumber313768
dc.relation.grantnumber345196
dc.relation.grantnumber268586
dc.relation.grantnumber299506
dc.relation.grantnumber353392
dc.relation.grantnumber276239
dc.relation.grantnumber292466
dc.relation.grantnumber339418
dc.relation.grantnumber335727
dc.subject.ysokoneoppiminen
dc.subject.ysokoulupudokkaat
dc.subject.ysopäiväkodit
dc.subject.ysotoisen asteen koulutus
dc.subject.ysoperusopetus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p20706
jyx.subject.urihttp://www.yso.fi/onto/yso/p282
jyx.subject.urihttp://www.yso.fi/onto/yso/p3387
jyx.subject.urihttp://www.yso.fi/onto/yso/p19327
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1038/s41598-024-63629-0
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramStrategic research programmes, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramStrategic research programmes, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramStrategic research programmes, AoFen
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramStrategic research programmes, AoFen
jyx.fundingprogramStrategisen tutkimuksen ohjelmat STN, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundingprogramStrategisen tutkimuksen ohjelmat STN, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramStrategisen tutkimuksen ohjelmat STN, SAfi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramProfilointi, SAfi
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundingprogramStrategisen tutkimuksen ohjelmat STN, SAfi
jyx.fundinginformationThe First Steps Study was funded by by grants from the Academy of Finland (Grant numbers: 213486, 263891, 268586, 292466, 276239, 284439, and 313768). The School Path study was funded by grants from Academy of Finland (Grant numbers: 299506 and 323773).This research was also partly funded by the Strategic Research Council (SRC) established within the Academy of Finland (Grant numbers: 335625, 335727, 345196, 358490, and 358250 for the project CRITICAL and Grant numbers: 352648, 353392 for the project Right to Belong). In addition, Maria Psyridou was supported by the Academy of Finland (Grant number: 339418).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0