Combining YOLO V5 and transfer learning for smoke-based wildfire detection on boreal forests
Raita-Hakola, A.-M., Rahkonen, S., Suomalainen, J., Markelin, L., Oliveira, R., Hakala, T., Koivumäki, N., Honkavaara, E., & Pölönen, I. (2023). Combining YOLO V5 and transfer learning for smoke-based wildfire detection on boreal forests. In N. El-Sheimy, A. Abdelbary, N. El-Bendary, & Y. Mohasseb (Eds.), ISPRS Geospatial Week 2023 (pp. 1771-1778). Copernicus publications. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-1/W2-2023. https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-1771-2023
Julkaistu sarjassa
International Archives of the Photogrammetry, Remote Sensing and Spatial Information SciencesTekijät
Päivämäärä
2023Tekijänoikeudet
© 2023 the Authors
Wildfires present severe threats to various aspects of ecosystems, human settlements, and the environment. Early detection plays a critical role in minimizing the destructive consequences of wildfires. This study introduces an innovative approach for smoke-based wildfire detection in Boreal forests by combining the YOLO V5 algorithm and transfer learning. YOLO V5 is renowned for its real-time performance and accuracy in object detection. Given the scarcity of labelled smoke images specific to wildfire scenes, transfer learning techniques are employed to address this limitation. Initially, the generalisability of smoke as an object is examined by utilising wildfire data collected from diverse environments for fine-tuning and testing purposes in Boreal forest scenarios. Subsequently, Boreal forest fire data is employed for training and fine-tuning to achieve high detection accuracy and explore benchmarks for effective local training data. This approach minimises extensive manual labelling efforts while enhancing the accuracy of smoke-based wildfire detection in Boreal forest environments. Experimental results validate the efficacy of the proposed approach. The combined YOLO V5 and transfer learning framework demonstrates a high detection accuracy, making it a promising solution for automated wildfire detection systems. Implementing this methodology can potentially enhance early detection and response to wildfires in Boreal forest regions, thereby contributing to improved disaster management and mitigation
...
Julkaisija
Copernicus publicationsKonferenssi
International Society for Photogrammetry and Remote Sensing CongressKuuluu julkaisuun
ISPRS Geospatial Week 2023ISSN Hae Julkaisufoorumista
1682-1750Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/216042115
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Muut, SALisätietoja rahoituksesta
This study is funded by the Academy of Finland (Grant No. 348009 and 346710).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Firefront Forecasting in Boreal Forests : Machine Learning Approach to Predict Wildfire Propagation
Raita-Hakola, Anna-Maria; Pölönen, Ilkka (Copernicus GmbH, 2024)Wildfires have become increasingly prevalent worldwide due to climate change, posing significant threats to human lives, property, and natural ecosystems. The rapid progression of wildfires necessitates predictive computational ... -
Trade-offs among intensive forestry, ecosystem services and biodiversity in boreal forests
Pohjanmies, Tähti (University of Jyväskylä, 2018)Finnish forests are used extensively for timber production but are also providers of other ecosystem services and harbor unique biodiversity. The ecosystem services approach has so far been used marginally in the context ... -
Global warming, forest biodiversity and conservation strategies in boreal landscapes
Mazziotta, Adriano (University of Jyväskylä, 2014) -
Eco-epidemiology of tick- and rodent-borne pathogens in boreal forests
Cayol, Claire (University of Jyväskylä, 2017)Infectious diseases are amongst the ten major causes of human mortality worldwide, 60% of them being animal-borne. Variations of abiotic and biotic conditions are likely to modify the transmission of parasites and ... -
National high-resolution conservation prioritisation of boreal forests
Mikkonen, Ninni; Leikola, Niko; Lehtomäki, Joona; Halme, Panu; Moilanen, Atte (Elsevier BV, 2023)The continuous decline of forest biodiversity highlights the importance of the development of cost-effective and ecologically sustainable land-use planning approaches. Spatial conservation prioritisation (SCP) can be ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.