Spatial trade-offs between ecological and economical sustainability in the boreal production forest
Mazziotta, A., Borges, P., Kangas, A., Halme, P., & Eyvindson, K. (2023). Spatial trade-offs between ecological and economical sustainability in the boreal production forest. Journal of Environmental Management, 330, Article 117144. https://doi.org/10.1016/j.jenvman.2022.117144
Julkaistu sarjassa
Journal of Environmental ManagementPäivämäärä
2023Oppiaine
Evoluutiotutkimus (huippuyksikkö)ResurssiviisausyhteisöEkologia ja evoluutiobiologiaCentre of Excellence in Evolutionary ResearchSchool of Resource WisdomEcology and Evolutionary BiologyTekijänoikeudet
© 2022 The Authors
Economically-oriented forestry aims to sustain timber harvest revenues, while ecologically-oriented management supplies suitable habitat for species using deadwood as primary habitat. As these objectives are conflicting, planning for economic and ecological sustainability involves compromise and trade-offs. We analyze the spatial trade-offs between the economic value from timber harvesting and the volume of deadwood in the boreal forest. We assess these trade-offs from three perspectives: (1) landscape characteristics, affected by conservation strategies; (2) forest management promoting either economic or ecological values; (3) uncertainty in inventory errors undermining the estimate of the two sustainability objectives. To reveal the tradeoffs between the forest economic and ecological values we simulated and optimized a production landscape in Finland 30 years into the future accounting for uncertainty in biomass and deadwood inventories. We found that, with a limited reduction in timber harvesting (7%), (i) the amount of deadwood increased more in non-aggregated (45%) than in aggregated (16%) stands, (ii) constraining stands in adjacent areas further increased deadwood (21%) respect to the matrix and (iii) 7% of connected stand area harbored ≥20 m3/ha deadwood supporting survival of near-threatened species. Our results demonstrate that the structure of the landscape for biodiversity can be improved with limited economic losses. However, improving habitat configuration requires larger economic losses than only increasing habitat amount, but its ecological benefits are larger both for common and red-listed species. We found that management oriented towards stand aggregation not only creates connected areas with high deadwood of high value biodiversity but also improves the value of the whole matrix by decreasing intensive timber harvesting and energy wood collection. Finally, we found that uncertainties alter the estimate of the potential of the forest landscape to supply deadwood, and this can affect the choice of management actions to allocate over the landscape. To conclude, our results demonstrate the trade-offs between economic forest use and conservation are affected differently by landscape characteristics, forest management and uncertainty in inventory errors. As such these drivers should be considered when optimizing the forest for multiple uses.
...
Julkaisija
Elsevier BVISSN Hae Julkaisufoorumista
0301-4797Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/164887933
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open Access funding was provided by Natural Resources Institute Finland (LUKE). AM and KE received funding from Kungl. Skogs-och Lantbruksakademiens (Tandem Forest Values 2017, project code: MAINTAIN 01, 41007–00184501). AM, PB, AK and KE received funding from the Academy of Finland Flagship Forest-Human-Machine Interplay - Building Resilience, Redefining Value Networks and Enabling Meaningful Experiences (UNITE) 337653 (project code: FRONTECH WP1, 41007–00209301). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Future supply of boreal forest ecosystem services is driven by management rather than by climate change
Triviño, María; Morán‐Ordoñez, Alejandra; Eyvindson, Kyle; Blattert, Clemens; Burgas, Daniel; Repo, Anna; Pohjanmies, Tähti; Brotons, Lluís; Snäll, Tord; Mönkkönen, Mikko (Wiley, 2023)Forests provide a wide variety of ecosystem services (ES) to society. The boreal biome is experiencing the highest rates of warming on the planet and increasing demand for forest products. To foresee how to maximize the ... -
Optimizing management to enhance multifunctionality in a boreal forest landscape
Triviño, María; Pohjanmies, Tähti; Mazziotta, Adriano; Juutinen, Artti; Podkopaev, Dmitry; Le tortorec, Eric; Mönkkönen, Mikko (Wiley-Blackwell Publishing Ltd.; British Ecological Society, 2017)The boreal biome, representing approximately one-third of remaining global forests, provides a number of crucial ecosystem services. A particular challenge in forest ecosystems is to reconcile demand for an increased timber ... -
Continuous cover forestry is a cost-efficient tool to increase multifunctionality of boreal production forests in Fennoscandia
Peura, Maiju; Burgas Riera, Daniel; Eyvindson, Kyle; Repo, Anna; Mönkkönen, Mikko (Elsevier, 2017)Earlier research has suggested that the diversification of silvicultural strategies is a cost-efficient tool to ensure multifunctionality in production forests. This study compared the effects of continuous cover forestry ... -
Management diversification increases habitat availability for multiple biodiversity indicator species in production forests
Duflot, R.; Eyvindson, K.; Mönkkönen, M. (Springer Science and Business Media LLC, 2022)Context Forest biodiversity is closely linked to habitat heterogeneity, while forestry actions often cause habitat homogenization. Alternative approaches to even-aged management were developed to restore habitat heterogeneity ... -
Global warming, forest biodiversity and conservation strategies in boreal landscapes
Mazziotta, Adriano (University of Jyväskylä, 2014)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.