A non-compact convex hull in generalized non-positive curvature
Basso, G., Krifka, Y., & Soultanis, E. (2024). A non-compact convex hull in generalized non-positive curvature. Mathematische Annalen, Early online. https://doi.org/10.1007/s00208-024-02905-w
Julkaistu sarjassa
Mathematische AnnalenPäivämäärä
2024Tekijänoikeudet
© 2024 the Authors
Gromov’s (open) question whether the closed convex hull of finitely many points in a complete CAT(0) space is compact naturally extends to weaker notions of non-positive curvature in metric spaces. In this article, we consider metric spaces admitting a conical geodesic bicombing, and show that the question has a negative answer in this setting. Specifically, for each n > 1, we construct a complete metric space X admitting a conical geodesic bicombing, which is the closed convex hull of n points and is not compact. The space X moreover has the universal property that for any n points A = {x1,..., xn} ⊂ Y in a complete CAT(0) space Y there exists a Lipschitz map f : X → Y such that the convex hull of A is contained in f (X).
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0025-5831Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/216071950
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open Access funding provided by University of Jyväskylä (JYU).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Nilpotent Groups and Bi-Lipschitz Embeddings Into L1
Eriksson-Bique, Sylvester; Gartland, Chris; Le Donne, Enrico; Naples, Lisa; Nicolussi Golo, Sebastiano (Oxford University Press (OUP), 2023)We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an L1 space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into L1 is ... -
Indecomposable sets of finite perimeter in doubling metric measure spaces
Bonicatto, Paolo; Pasqualetto, Enrico; Rajala, Tapio (Springer, 2020)We study a measure-theoretic notion of connectedness for sets of finite perimeter in the setting of doubling metric measure spaces supporting a weak (1,1)-Poincaré inequality. The two main results we obtain are a decomposition ... -
Metric equivalences of Heintze groups and applications to classifications in low dimension
Kivioja, Ville; Le Donne, Enrico; Nicolussi Golo, Sebastiano (Duke University Press, 2022)We approach the quasi-isometric classification questions on Lie groups by considering low dimensional cases and isometries alongside quasi-isometries. First, we present some new results related to quasi-isometries between ... -
On one-dimensionality of metric measure spaces
Schultz, Timo (American Mathematical Society (AMS), 2021)In this paper, we prove that a metric measure space which has at least one open set isometric to an interval, and for which the (possibly non-unique) optimal transport map exists from any absolutely continuous measure to ... -
Rectifiability of RCD(K,N) spaces via δ-splitting maps
Bruè, Elia; Pasqualetto, Enrico; Semola, Daniele (Finnish Mathematical Society, 2021)In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via -splitting maps. The arguments are inspired by the Cheeger-Colding ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.