ALICE luminosity determination for Pb–Pb collisions at √sNN = 5.02 TeV
ALICE Collaboration. (2024). ALICE luminosity determination for Pb–Pb collisions at √sNN = 5.02 TeV. Journal of Instrumentation, 19(2), Article P02039. https://doi.org/10.1088/1748-0221/19/02/P02039
Published in
Journal of InstrumentationAuthors
Date
2024Copyright
© 2024 CERN for the benefit of the ALICE collaboration. Published by
IOP Publishing Ltd on behalf of Sissa Medialab.
Luminosity determination within the ALICE experiment is based on the measurement, in van der Meer scans, of the cross sections for visible processes involving one or more detectors (visible cross sections). In 2015 and 2018, the Large Hadron Collider provided Pb−Pb collisions at a centre-of-mass energy per nucleon pair of √sNN=5.02 TeV. Two visible cross sections, associated with particle detection in the Zero Degree Calorimeter (ZDC) and in the V0 detector, were measured in a van der Meer scan. This article describes the experimental set-up and the analysis procedure, and presents the measurement results. The analysis involves a comprehensive study of beam-related effects and an improved fitting procedure, compared to previous ALICE studies, for the extraction of the visible cross section. The resulting uncertainty of both the ZDC-based and the V0-based luminosity measurement for the full sample is 2.5%. The inelastic cross section for hadronic interactions in Pb−Pb collisions at √sNN=5.02 TeV, obtained by efficiency correction of the V0-based visible cross section, was measured to be 7.67±0.25 b, in agreement with predictions using the Glauber model.
...
Publisher
IOP PublishingISSN Search the Publication Forum
1748-0221Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/213417883
Metadata
Show full item recordCollections
Related funder(s)
European Commission; Research Council of FinlandFunding program(s)
RIA Research and Innovation Action, H2020; Centre of Excellence, AoF
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
In addition, individual groups or membershave received support from: Marie Skłodowska Curie, Strong 2020 — Horizon 2020, EuropeanResearch Council (grant nos. 824093, 896850, 950692), European Union; Academy of Finland(Center of Excellence in Quark Matter) (grant nos. 346327, 346328), Finland; Programa de Apoyospara la Superación del Personal Académico, UNAM, Mexico.License
Related items
Showing items with similar title or keywords.
-
Event plane determination with the new ALICE FIT detector
Rytkönen, Heidi Maria (Sissa Medialab, 2021)During the on-going second long shutdown of LHC, the forward detectors of the ALICE experiment are implementing an extensive upgrade. In particular, a new Fast Interaction Trigger (FIT) has been designed and built. It ... -
Performance study of a 3×1×1 m3 dual phase liquid Argon Time Projection Chamber exposed to cosmic rays
WA105 collaboration (IOP Publishing, 2021)We report the results of the analyses of the cosmic ray data collected with a 4 tonne (3×1×1 m3) active mass (volume) Liquid Argon Time-Projection Chamber (TPC) operated in a dual-phase mode. We present a detailed study ... -
A 4 tonne demonstrator for large-scale dual-phase liquid argon time projection chambers
Aimard, B.; Alt, Ch.; Asaadi, J.; Auger, M.; Aushev, V.; Autiero, D.; Badoi, M.M.; Balaceanu, A.; Balik, G.; Balleyguier, L.; Bechetoille, E.; Belver, D.; Blebea-Apostu, A.M.; Bolognesi, S.; Bordoni, S.; Bourgeois, N.; Bourguille, B.; Bremer, J.; Brown, G.; Brunetti, G.; Brunetti, L.; Caiulo, D.; Calin, M.; Calvo, E.; Campanelli, M.; Cankocak, K.; Cantini, C.; Carlus, B.; Cautisanu, B.M.; Chalifour, M.; Chappuis, A.; Charitonidis, N.; Chatterjee, A.; Chiriacescu, A.; Chiu, P.; Conforti, S.; Cotte, P.; Crivelli, P.; Cuesta, C.; Dawson, J.; De Bonis, I.; De La Taille, C.; Delbart, A.; Desforge, D.; Luise, S. Di; Dimitru, B.S.; Doizon, F.; Drancourt, C.; Duchesneau, D.; Dulucq, F.; Dumarchez, J.; Duval, F.; Emery, S.; Ereditato, A.; Esanu, T.; Falcone, A.; Fusshoeller, K.; Gallego-Ros, A.; Galymov, V.; Geffroy, N.; Gendotti, A.; Gherghel-Lascu, M.; Giganti, C.; Gil-Botella, I.; Girerd, C.; Gomoiu, M.C.; Gorodetzky, P.; Hamada, E.; Hanni, R.; Hasegawa, T.; Holin, A.; Horikawa, S.; Ikeno, M.; Jiménez, S.; Jipa, A.; Karolak, M.; Karyotakis, Y.; Kasai, S.; Kasami, K.; Kishishita, T.; Kreslo, I.; Kryn, D.; Lastoria, C.; Lazanu, I.; Lehmann-Miotto, G.; Lira, N.; Loo, Kai; Lorca, D.; Lutz, P.; Lux, T.; Maalampi, Jukka; Mair, G.; Maki, M.; Manenti, L.; Margineanu, R.M.; Marteau, J.; Martin-Chassard, G.; Mathez, H.; Mazzucato, E.; Misitano, G.; Mitrica, B.; Mladenov, D.; Bueno, L. Molina; Martínez, C. Moreno; Mols, J.P.; Mosu, T.S.; Mu, W.; Munteanu, A.; Murphy, S.; Nakayoshi, K.; Narita, S.; Navas-Nicolás, D.; Negishi, K.; Nessi, M.; Niculescu-Oglinzanu, M.; Nita, L.; Noto, F.; Noury, A.; Onishchuk, Y.; Palomares, C.; Parvu, M.; Patzak, T.; Pénichot, Y.; Pennacchio, E.; Periale, L.; Pessard, H.; Pietropaolo, F.; Piret, Y.; Popov, B.; Pugnere, D.; Radics, B.; Redondo, D.; Regenfus, C.; Remoto, A.; Resnati, F.; Rigaut, Y.A.; Ristea, C.; Rubbia, A.; Saftoiu, A.; Sakashita, K.; Sanchez, F.; Santos, C.; Scarpelli, A.; Schloesser, C.; Lavina, L. Scotto; Sendai, K.; Sergiampietri, F.; Shahsavarani, S.; Shoji, M.; Sinclair, J.; Soto-Oton, J.; Stanca, D.L.; Stefan, D.; Stroescu, P.; Sulej, R.; Tanaka, M.; Toboaru, V.; Tonazzo, A.; Tromeur, W.; Trzaska, Wladyslaw; Uchida, T.; Vannucci, F.; Vasseur, G.; Verdugo, A.; Viant, T.; Vihonen, Sampsa; Vilalte, S.; Weber, M.; Wu, S.; Yu, J.; Zambelli, L.; Zito, M. (Institute of Physics Publishing Ltd., 2018)A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ... -
Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering
KM3NeT collaboration; JUNO collaboration (Springer Science and Business Media LLC, 2022)This article presents the potential of a combined analysis of the JUNO and KM3NeT/ORCA experiments to determine the neutrino mass ordering. This combination is particularly interesting as it significantly boosts the potential ... -
Radioactivity control strategy for the JUNO detector
The JUNO collaboration (Springer Science+Business Media, 2021)JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. ...