Radioactivity control strategy for the JUNO detector
The JUNO collaboration. (2021). Radioactivity control strategy for the JUNO detector. Journal of High Energy Physics, 2021(11), Article 102. https://doi.org/10.1007/jhep11(2021)102
Julkaistu sarjassa
Journal of High Energy PhysicsTekijät
Päivämäärä
2021Oppiaine
Ydin- ja kiihdytinfysiikan huippuyksikköFysiikkaCentre of Excellence in Nuclear and Accelerator Based PhysicsPhysicsTekijänoikeudet
© 2021 the Authors
JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day (cpd), therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz (i.e. ∼1 cpd accidental background) in the default fiducial volume, above an energy threshold of 0.7 MeV.
...
Julkaisija
Springer Science+Business MediaISSN Hae Julkaisufoorumista
1126-6708Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/101928382
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The design and sensitivity of JUNO’s scintillator radiopurity pre-detector OSIRIS
JUNO Collaboration (Springer, 2021)The OSIRIS detector is a subsystem of the liquid scintillator filling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO ... -
Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report
DUNE Collaboration (MDPI AG, 2021)The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. ... -
Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector
Daya Bay collaboration; JUNO collaboration (Elsevier, 2021)To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in ... -
THEIA : an advanced optical neutrino detector
Askins, M.; Bagdasarian, Z.; Barros, N.; Beier, E. W.; Blucher, E.; Bonventre, R.; Bourret, E.; Callaghan, E. J.; Caravaca, J.; Diwan, M.; Dye, S. T.; Eisch, J.; Elagin, A.; Enqvist, T.; Fischer, V.; Frankiewicz, K.; Grant, C.; Guffanti, D.; Hagner, C.; Hallin, A.; Jackson, C. M.; Jiang, R.; Kaptanoglu, T.; Klein, J. R.; Kolomensky, Yu. G.; Kraus, C.; Krennrich, F.; Kutter, T.; Lachenmaier, T.; Land, B.; Lande, K.; Learned, J. G.; Lozza, V.; Ludhova, L.; Malek, M.; Manecki, S.; Maneira, J.; Maricic, J.; Martyn, J.; Mastbaum, A.; Mauger, C.; Moretti, F.; Napolitano, J.; Naranjo, B.; Nieslony, M.; Oberauer, L.; Orebi Gann, G. D.; Puellet, J.; Pershing, T.; Petcov, S. T.; Pickard, L.; Rosero, R.; Sanchez, M. C.; Sawatzki, J.; Seo, S. H.; Smiley, M.; Smy, M.; Stahl, A.; Steiger, H.; Stock, M. R.; Sunej, H.; Svoboda, R.; Tiras, E.; Trzaska, W. H.; Tzanov, M.; Vagins, M.; Vilela, C.; Wang, Z.; Wang, J.; Wetstein, M.; Wilking, M. J.; Winslow, L.; Wittich, P.; Wonsak, B.; Worcester, E.; Wurm, M.; Yang, G.; Yeh, M.; Zimmerman, E. D.; Zsoldos, S.; Zuber, K. (Springer, 2020)New developments in liquid scintillators, high-efficiency, fast photon detectors, and chromatic photon sorting have opened up the possibility for building a large-scale detector that can discriminate between Cherenkov and ... -
Eos : conceptual design for a demonstrator of hybrid optical detector technology
Anderson, T.; Anderssen, E.; Askins, M.; Bacon, A.J.; Bagdasarian, Z.; Baldoni, A.; Barros, N.; Bartoszek, L.; Bergevin, M.; Bernstein, A.; Blucher, E.; Boissevain, J.; Bonventre, R.; Brown, D.; Callaghan, E.J.; Cowen, D.F.; Dazeley, S.; Diwan, M.; Duce, M.; Fleming, D.; Frankiewicz, K.; Gooding, D.M.; Grant, C.; Juechter, J.; Kaptanoglu, T.; Kim, T.; Klein, J.R.; Kraus, C.; Kroupová, T.; Land, B.; Lebanowski, L.; Lozza, V.; Marino, A.; Mastbaum, A.; Mauger, C.; Mayers, G.; Minock, J.; Naugle, S.; Newcomer, M.; Nikolica, A.; Orebi Gann, G.D.; Pickard, L.; Ren, L.; Rincon, A.; Rowe, N.; Saba, J.; Schoppmann, S.; Sensenig, J.; Smiley, M.; Song, H.; Steiger, H.; Svoboda, R.; Tiras, E.; To, W.H.; Trzaska, W.H.; Van Berg, R.; Veeraraghavan, V.; Wallig, J.; Wendel, G.; Wetstein, M.; Wurm, M.; Yang, G.; Yeh, M.; Zimmerman, E.D. (IOP Publishing, 2023)Eos is a technology demonstrator, designed to explore the capabilities of hybrid event detection technology, leveraging both Cherenkov and scintillation light simultaneously. With a fiducial mass of four tons, Eos is ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.