dc.contributor.author | Afsar, Bekir | |
dc.contributor.author | Silvennoinen, Johanna | |
dc.contributor.author | Ruiz, Francisco | |
dc.contributor.author | Ruiz, Ana B. | |
dc.contributor.author | Misitano, Giovanni | |
dc.contributor.author | Miettinen, Kaisa | |
dc.date.accessioned | 2024-04-24T10:43:47Z | |
dc.date.available | 2024-04-24T10:43:47Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Afsar, B., Silvennoinen, J., Ruiz, F., Ruiz, A. B., Misitano, G., & Miettinen, K. (2024). An experimental design for comparing interactive methods based on their desirable properties. <i>Annals of Operations Research</i>, <i>Early online</i>. <a href="https://doi.org/10.1007/s10479-024-05941-6" target="_blank">https://doi.org/10.1007/s10479-024-05941-6</a> | |
dc.identifier.other | CONVID_213268059 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/94448 | |
dc.description.abstract | In multiobjective optimization problems, Pareto optimal solutions representing different tradeoffs cannot be ordered without incorporating preference information of a decision maker (DM). In interactive methods, the DM takes an active part in the solution process and provides preference information iteratively. Between iterations, the DM can learn how achievable the preferences are, learn about the tradeoffs, and adjust the preferences. Different interactive methods have been proposed in the literature, but the question of how to select the best-suited method for a problem to be solved remains partly open. We propose an experimental design for evaluating interactive methods according to several desirable properties related to the cognitive load experienced by the DM, the method’s ability to capture preferences and its responsiveness to changes in the preferences, the DM’s satisfaction in the overall solution process, and their confidence in the final solution. In the questionnaire designed, we connect each questionnaire item to be asked with a relevant research question characterizing these desirable properties of interactive methods. We also conduct a between-subjects experiment to compare three interactive methods and report interesting findings. In particular, we find out that trade-off-free methods may be more suitable for exploring the whole set of Pareto optimal solutions, while classification-based methods seem to work better for fine-tuning the preferences to find the final solution. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Science+Business Media | |
dc.relation.ispartofseries | Annals of Operations Research | |
dc.rights | CC BY 4.0 | |
dc.subject.other | multiple criteria optimization | |
dc.subject.other | interactive methods | |
dc.subject.other | performance comparison | |
dc.subject.other | empirical experiments | |
dc.subject.other | human decision makers | |
dc.title | An experimental design for comparing interactive methods based on their desirable properties | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202404243061 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0254-5330 | |
dc.relation.volume | Early online | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 322221 | |
dc.subject.yso | interaktiivisuus | |
dc.subject.yso | pareto-tehokkuus | |
dc.subject.yso | optimointi | |
dc.subject.yso | päätöksentukijärjestelmät | |
dc.subject.yso | päätöksenteko | |
dc.subject.yso | monitavoiteoptimointi | |
dc.subject.yso | päättäjät | |
dc.subject.yso | valintakriteerit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10823 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28039 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13477 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27803 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8743 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p32016 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p8741 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7606 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/s10479-024-05941-6 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | This research is related to the thematic research area Decision Analytics utilizing Causal Models and Multiobjective Optimization (DEMO, jyu.fi/demo) at the University of Jyvaskyla, and was partly funded by the Academy of Finland (project 322221). This research was partly supported by the Spanish Ministry of Science (projects PID2019-104263RB-C42 and PID2020-115429GB-I00), the Regional Government of Andalucía (projects SEJ-532 and P18-RT-1566), and the University of Málaga (grant B1-2020-18). Open Access funding provided by University of Jyväskylä (JYU). | |
dc.type.okm | A1 | |