Interactive Multiobjective Robust Optimization with NIMBUS
Zhou-Kangas, Y., Miettinen, K., & Sindhya, K. (2018). Interactive Multiobjective Robust Optimization with NIMBUS. In M. Baum, G. Brenner, J. Grabowski, T. Hanschke, S. Hartmann, & A. Schöbel (Eds.), Simulation Science : First International Workshop, SimScience 2017, Göttingen, Germany, April 27–28, 2017, Revised Selected Papers (pp. 60-76). Springer. Communications in Computer and Information Science, 889. https://doi.org/10.1007/978-3-319-96271-9_4
Julkaistu sarjassa
Communications in Computer and Information ScienceToimittajat
Päivämäärä
2018In this paper, we introduce the MuRO-NIMBUS method for solving multiobjective optimization problems with uncertain parameters. The concept of set-based minmax robust Pareto optimality is utilized to tackle the uncertainty in the problems. We separate the solution process into two stages: the pre-decision making stage and the decision making stage. We consider the decision maker’s preferences in the nominal case, i.e., with the most typical or undisturbed values of the uncertain parameters. At the same time, the decision maker is informed about the objective function values in the worst case to support her/him to make an informed decision. To help the decision maker to understand the behaviors of the solutions, we visually present the objective function values. As a result, the decision maker can find a preferred balance between robustness and objective function values under the nominal case.
Julkaisija
SpringerEmojulkaisun ISBN
978-3-319-96270-2Konferenssi
Simulation ScienceKuuluu julkaisuun
Simulation Science : First International Workshop, SimScience 2017, Göttingen, Germany, April 27–28, 2017, Revised Selected PapersISSN Hae Julkaisufoorumista
1865-0929Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28203235
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
DESMILS : a decision support approach for multi-item lot sizing using interactive multiobjective optimization
Kania, Adhe; Afsar, Bekir; Miettinen, Kaisa; Sipilä, Juha (Springer, 2024)We propose a decision support approach, called DESMILS, to solve multi-item lot sizing problems with a large number of items by using single-item multiobjective lot sizing models. This approach for making lot sizing decisions ... -
A Visualization Technique for Accessing Solution Pool in Interactive Methods of Multiobjective Optimization
Filatovas, Ernestas; Podkopaev, Dmitry; Kurasova, Olga (Universitatea Agora, 2015)Interactive methods of multiobjective optimization repetitively derive Pareto optimal solutions based on decision maker's preference information and present the obtained solutions for his/her consideration. Some interactive ... -
DESDEO: The Modular and Open Source Framework for Interactive Multiobjective Optimization
Misitano, Giovanni; Saini, Bhupinder Singh; Afsar, Bekir; Shavazipour, Babooshka; Miettinen Kaisa (Institute of Electrical and Electronics Engineers (IEEE), 2021)Interactive multiobjective optimization methods incorporate preferences from a human decision maker in the optimization process iteratively. This allows the decision maker to focus on a subset of solutions, learn about the ... -
Interactive methods for multiobjective robust optimization
Zhou-Kangas, Yue (Jyväskylän yliopisto, 2018) -
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.