Show simple item record

dc.contributor.authorAfsar, Bekir
dc.contributor.authorSilvennoinen, Johanna
dc.contributor.authorRuiz, Francisco
dc.contributor.authorRuiz, Ana B.
dc.contributor.authorMisitano, Giovanni
dc.contributor.authorMiettinen, Kaisa
dc.date.accessioned2024-04-24T10:43:47Z
dc.date.available2024-04-24T10:43:47Z
dc.date.issued2024
dc.identifier.citationAfsar, B., Silvennoinen, J., Ruiz, F., Ruiz, A. B., Misitano, G., & Miettinen, K. (2024). An experimental design for comparing interactive methods based on their desirable properties. <i>Annals of Operations Research</i>, <i>Early online</i>. <a href="https://doi.org/10.1007/s10479-024-05941-6" target="_blank">https://doi.org/10.1007/s10479-024-05941-6</a>
dc.identifier.otherCONVID_213268059
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/94448
dc.description.abstractIn multiobjective optimization problems, Pareto optimal solutions representing different tradeoffs cannot be ordered without incorporating preference information of a decision maker (DM). In interactive methods, the DM takes an active part in the solution process and provides preference information iteratively. Between iterations, the DM can learn how achievable the preferences are, learn about the tradeoffs, and adjust the preferences. Different interactive methods have been proposed in the literature, but the question of how to select the best-suited method for a problem to be solved remains partly open. We propose an experimental design for evaluating interactive methods according to several desirable properties related to the cognitive load experienced by the DM, the method’s ability to capture preferences and its responsiveness to changes in the preferences, the DM’s satisfaction in the overall solution process, and their confidence in the final solution. In the questionnaire designed, we connect each questionnaire item to be asked with a relevant research question characterizing these desirable properties of interactive methods. We also conduct a between-subjects experiment to compare three interactive methods and report interesting findings. In particular, we find out that trade-off-free methods may be more suitable for exploring the whole set of Pareto optimal solutions, while classification-based methods seem to work better for fine-tuning the preferences to find the final solution.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science+Business Media
dc.relation.ispartofseriesAnnals of Operations Research
dc.rightsCC BY 4.0
dc.subject.othermultiple criteria optimization
dc.subject.otherinteractive methods
dc.subject.otherperformance comparison
dc.subject.otherempirical experiments
dc.subject.otherhuman decision makers
dc.titleAn experimental design for comparing interactive methods based on their desirable properties
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202404243061
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0254-5330
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber322221
dc.subject.ysointeraktiivisuus
dc.subject.ysopareto-tehokkuus
dc.subject.ysooptimointi
dc.subject.ysopäätöksentukijärjestelmät
dc.subject.ysopäätöksenteko
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysopäättäjät
dc.subject.ysovalintakriteerit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p10823
jyx.subject.urihttp://www.yso.fi/onto/yso/p28039
jyx.subject.urihttp://www.yso.fi/onto/yso/p13477
jyx.subject.urihttp://www.yso.fi/onto/yso/p27803
jyx.subject.urihttp://www.yso.fi/onto/yso/p8743
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p8741
jyx.subject.urihttp://www.yso.fi/onto/yso/p7606
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s10479-024-05941-6
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis research is related to the thematic research area Decision Analytics utilizing Causal Models and Multiobjective Optimization (DEMO, jyu.fi/demo) at the University of Jyvaskyla, and was partly funded by the Academy of Finland (project 322221). This research was partly supported by the Spanish Ministry of Science (projects PID2019-104263RB-C42 and PID2020-115429GB-I00), the Regional Government of Andalucía (projects SEJ-532 and P18-RT-1566), and the University of Málaga (grant B1-2020-18). Open Access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0