Show simple item record

dc.contributor.authorPoikela, Noora
dc.contributor.authorLaetsch, Dominik R
dc.contributor.authorHoikkala, Ville
dc.contributor.authorLohse, Konrad
dc.contributor.authorKankare, Maaria
dc.date.accessioned2024-04-16T09:09:18Z
dc.date.available2024-04-16T09:09:18Z
dc.date.issued2024
dc.identifier.citationPoikela, N., Laetsch, D. R., Hoikkala, V., Lohse, K., & Kankare, M. (2024). Chromosomal Inversions and the Demography of Speciation in Drosophila montana and Drosophila flavomontana. <i>Genome Biology and Evolution</i>, <i>16</i>(3), Article evae024. <a href="https://doi.org/10.1093/gbe/evae024" target="_blank">https://doi.org/10.1093/gbe/evae024</a>
dc.identifier.otherCONVID_212335225
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/94324
dc.description.abstractChromosomal inversions may play a central role in speciation given their ability to locally reduce recombination and therefore genetic exchange between diverging populations. We analyzed long- and short-read whole-genome data from sympatric and allopatric populations of 2 Drosophila virilis group species, Drosophila montana and Drosophila flavomontana, to understand if inversions have contributed to their divergence. We identified 3 large alternatively fixed inversions on the X chromosome and one on each of the autosomes 4 and 5. A comparison of demographic models estimated for inverted and noninverted (colinear) chromosomal regions suggests that these inversions arose before the time of the species split. We detected a low rate of interspecific gene flow (introgression) from D. montana to D. flavomontana, which was further reduced inside inversions and was lower in allopatric than in sympatric populations. Together, these results suggest that the inversions were already present in the common ancestral population and that gene exchange between the sister taxa was reduced within inversions both before and after the onset of species divergence. Such ancestrally polymorphic inversions may foster speciation by allowing the accumulation of genetic divergence in loci involved in adaptation and reproductive isolation inside inversions early in the speciation process, while gene exchange at colinear regions continues until the evolving reproductive barriers complete speciation. The overlapping X inversions are particularly good candidates for driving the speciation process of D. montana and D. flavomontana, since they harbor strong genetic incompatibilities that were detected in a recent study of experimental introgression.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.ispartofseriesGenome Biology and Evolution
dc.rightsCC BY 4.0
dc.subject.otherkromosomin kääntymä
dc.subject.otherintrogressio
dc.subject.otherchromosomal inversion
dc.subject.othercoalescence
dc.subject.otherDrosophila
dc.subject.othergenetic divergence
dc.subject.otherintrogression
dc.subject.otherspeciation
dc.titleChromosomal Inversions and the Demography of Speciation in Drosophila montana and Drosophila flavomontana
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202404162943
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineEkologia ja evoluutiobiologiafi
dc.contributor.oppiaineSolu- ja molekyylibiologiafi
dc.contributor.oppiaineEcology and Evolutionary Biologyen
dc.contributor.oppiaineCell and Molecular Biologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1759-6653
dc.relation.numberinseries3
dc.relation.volume16
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber322980
dc.subject.ysoperimä
dc.subject.ysokromosomit
dc.subject.ysomahlakärpäset
dc.subject.ysopopulaatiogenetiikka
dc.subject.ysolajit
dc.subject.ysogeenit
dc.subject.ysolajiutuminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p8862
jyx.subject.urihttp://www.yso.fi/onto/yso/p7688
jyx.subject.urihttp://www.yso.fi/onto/yso/p12159
jyx.subject.urihttp://www.yso.fi/onto/yso/p9005
jyx.subject.urihttp://www.yso.fi/onto/yso/p2765
jyx.subject.urihttp://www.yso.fi/onto/yso/p147
jyx.subject.urihttp://www.yso.fi/onto/yso/p15045
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.datasethttps://doi.org/10.5281/zenodo.10635471
dc.relation.doi10.1093/gbe/evae024
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis work was supported by a grant from the Academy of Finland project 322980 to M.K., a grant from the Finnish Cultural Foundation (Central Finland regional Fund) to N.P. and M.K., and a grant from the Jenny and Antti Wihuri Foundation to N.P. K.L. and D.R.L. are supported by an ERC starting grant (ModelGenomLand, 757648). K.L. was also supported by a Natural Environmental Research Council (NERC) UK Independent Research fellowship (NE/L011522/1).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0