Näytä suppeat kuvailutiedot

dc.contributor.authorGülmez, Burak
dc.contributor.authorEmmerich, Michael
dc.contributor.authorFan, Yingjie
dc.date.accessioned2024-04-10T06:57:32Z
dc.date.available2024-04-10T06:57:32Z
dc.date.issued2024
dc.identifier.citationGülmez, B., Emmerich, M., & Fan, Y. (2024). Multi-objective Optimization for Green Delivery Routing Problems with Flexible Time Windows. <i>Applied Artificial Intelligence</i>, <i>38</i>(1), Article 2325302. <a href="https://doi.org/10.1080/08839514.2024.2325302" target="_blank">https://doi.org/10.1080/08839514.2024.2325302</a>
dc.identifier.otherCONVID_207820974
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/94254
dc.description.abstractThis paper presents a model and heuristic solution algorithms for the Green Vehicle Routing Problem with Flexible Time Windows. A scenario of new vehicle routing is analyzed in which customers are asked to provide alternative time windows to offer flexibility to help route planners find more fuel-efficient routes (“green delivery”). Customers can rank their preferred time windows as first, second, and third. The optimization model aims to reduce tour costs, promote electromobility over fossil fuels, such as diesel, and meet customer preferences when possible and affordable. The study incorporates a multi-objective optimization model with three objectives, which are overall cost, use of fossil fuel, and customer satisfaction. For the new problem, a set of realistic benchmark problems is created and four mainstream solvers are applied for the Pareto front approximation: NSGA-II, NSGA-III, MOEA/D, and SMS-EMOA. These algorithms are compared in terms of their effectiveness in achieving the objectives of minimizing travel costs, promoting electromobility, and meeting customer preferences. The study uses five different problems of single-vehicle route planning. Two major findings are that the selection of the metaheuristic can make a big difference in terms of algorithm performance. The resulting 3-D Pareto fronts reveal the nature of this new class of problems: Interestingly, in the new model with flexible time windows, most users can still be delivered in their most preferred time windows with only small concessions to the other objectives. However, using only one time window per user can lead to an increasingly drastic cost and fossil fuel consumption.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherTaylor & Francis
dc.relation.ispartofseriesApplied Artificial Intelligence
dc.rightsCC BY 4.0
dc.titleMulti-objective Optimization for Green Delivery Routing Problems with Flexible Time Windows
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202404102820
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0883-9514
dc.relation.numberinseries1
dc.relation.volume38
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysologistiikka
dc.subject.ysoekotehokkuus
dc.subject.ysoalgoritmit
dc.subject.ysopareto-tehokkuus
dc.subject.ysoajoitus (suunnittelu)
dc.subject.ysoreititys
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p9140
jyx.subject.urihttp://www.yso.fi/onto/yso/p14805
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p28039
jyx.subject.urihttp://www.yso.fi/onto/yso/p28184
jyx.subject.urihttp://www.yso.fi/onto/yso/p23476
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1080/08839514.2024.2325302
jyx.fundinginformationBurak Gülmez acknowledges financial support under the TUBITAK 2219 postdoctoral fellow grant scheme (Scientific and Technological Research Council of Türkiye).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0