Multi-objective Optimization for Green Delivery Routing Problems with Flexible Time Windows
Gülmez, B., Emmerich, M., & Fan, Y. (2024). Multi-objective Optimization for Green Delivery Routing Problems with Flexible Time Windows. Applied Artificial Intelligence, 38(1), Article 2325302. https://doi.org/10.1080/08839514.2024.2325302
Julkaistu sarjassa
Applied Artificial IntelligencePäivämäärä
2024Tekijänoikeudet
© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC
This paper presents a model and heuristic solution algorithms for the Green Vehicle Routing Problem with Flexible Time Windows. A scenario of new vehicle routing is analyzed in which customers are asked to provide alternative time windows to offer flexibility to help route planners find more fuel-efficient routes (“green delivery”). Customers can rank their preferred time windows as first, second, and third. The optimization model aims to reduce tour costs, promote electromobility over fossil fuels, such as diesel, and meet customer preferences when possible and affordable. The study incorporates a multi-objective optimization model with three objectives, which are overall cost, use of fossil fuel, and customer satisfaction. For the new problem, a set of realistic benchmark problems is created and four mainstream solvers are applied for the Pareto front approximation: NSGA-II, NSGA-III, MOEA/D, and SMS-EMOA. These algorithms are compared in terms of their effectiveness in achieving the objectives of minimizing travel costs, promoting electromobility, and meeting customer preferences. The study uses five different problems of single-vehicle route planning. Two major findings are that the selection of the metaheuristic can make a big difference in terms of algorithm performance. The resulting 3-D Pareto fronts reveal the nature of this new class of problems: Interestingly, in the new model with flexible time windows, most users can still be delivered in their most preferred time windows with only small concessions to the other objectives. However, using only one time window per user can lead to an increasingly drastic cost and fossil fuel consumption.
...
Julkaisija
Taylor & FrancisISSN Hae Julkaisufoorumista
0883-9514Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/207820974
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Burak Gülmez acknowledges financial support under the TUBITAK 2219 postdoctoral fellow grant scheme (Scientific and Technological Research Council of Türkiye).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
Aghaei Pour, Pouya; Bandaru, Sunith; Afsar, Bekir; Emmerich, Michael; Miettinen, Kaisa (IEEE, 2024)In recent years, interactive evolutionary multiobjective optimization methods have been getting more and more attention. In these methods, a decision maker, who is a domain expert, is iteratively involved in the solution ... -
A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization
Chugh, Tinkle; Jin, Yaochu; Miettinen, Kaisa; Hakanen, Jussi; Sindhya, Karthik (Institute of Electrical and Electronics Engineers, 2018)We propose a surrogate-assisted reference vector guided evolutionary algorithm (EA) for computationally expensive optimization problems with more than three objectives. The proposed algorithm is based on a recently developed ... -
A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
Chugh, Tinkle; Sindhya, Karthik; Hakanen, Jussi; Miettinen, Kaisa (Springer, 2019)Evolutionary algorithms are widely used for solving multiobjective optimization problems but are often criticized because of a large number of function evaluations needed. Approximations, especially function approximations, ... -
Treed Gaussian Process Regression for Solving Offline Data-Driven Continuous Multiobjective Optimization Problems
Mazumdar, Atanu; López-Ibáñez, Manuel; Chugh, Tinkle; Hakanen, Jussi; Miettinen, Kaisa (MIT Press, 2023)For offline data-driven multiobjective optimization problems (MOPs), no new data is available during the optimization process. Approximation models (or surrogates) are first built using the provided offline data and an ... -
Handling expensive multiobjective optimization problems with evolutionary algorithms
Chugh, Tinkle (University of Jyväskylä, 2017)Multiobjective optimization problems (MOPs) with a large number of conflicting objectives are often encountered in industry. Moreover, these problem typically involve expensive evaluations (e.g. time consuming simulations ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.