Show simple item record

dc.contributor.authorHurri-Syrjänen, Ritva
dc.contributor.authorMartínez-Perales, Javier C.
dc.contributor.authorPérez, Carlos
dc.contributor.authorVähäkangas, Antti V.
dc.date.accessioned2024-04-04T08:06:51Z
dc.date.available2024-04-04T08:06:51Z
dc.date.issued2023
dc.identifier.citationHurri-Syrjänen, R., Martínez-Perales, J. C., Pérez, C., & Vähäkangas, A. V. (2023). On the BBM-Phenomenon in Fractional Poincaré–Sobolev Inequalities with Weights. <i>International Mathematics Research Notices</i>, <i>2023</i>(20), 17205-17244. <a href="https://doi.org/10.1093/imrn/rnac246" target="_blank">https://doi.org/10.1093/imrn/rnac246</a>
dc.identifier.otherCONVID_159323639
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/94158
dc.description.abstractIn this paper, we unify and improve some of the results of Bourgain, Brezis, and Mironescu and the weighted Poincaré–Sobolev estimate by Fabes, Kenig, and Serapioni. More precisely, we get weighted counterparts of the Poincaré–Sobolev-type inequality and also of the Hardy type inequality in the fractional case under some mild natural restrictions. A main feature of the results we obtain is the fact that we keep track of the behavior of the constants involved when the fractional parameter approaches to 1⁠. Our main method is based on techniques coming from harmonic analysis related to the self-improving property of generalized Poincaré inequalities.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherOxford University Press (OUP)
dc.relation.ispartofseriesInternational Mathematics Research Notices
dc.rightsIn Copyright
dc.titleOn the BBM-Phenomenon in Fractional Poincaré–Sobolev Inequalities with Weights
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202404042705
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange17205-17244
dc.relation.issn1073-7928
dc.relation.numberinseries20
dc.relation.volume2023
dc.type.versionacceptedVersion
dc.rights.copyright© 2023 Oxford University Press
dc.rights.accesslevelopenAccessfi
dc.subject.ysoharmoninen analyysi
dc.subject.ysoepäyhtälöt
dc.subject.ysofunktionaalianalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p28124
jyx.subject.urihttp://www.yso.fi/onto/yso/p15720
jyx.subject.urihttp://www.yso.fi/onto/yso/p17780
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1093/imrn/rnac246
jyx.fundinginformationThis work was supported by the Basque Government [BERC 2018-2021 program to J.M., IT1247-19 project and BERC 2018-2021 program to C.P.]; the Spanish State Research Agency through BCAM Severo Ochoa excellence accreditation [SEV-2017-2018 to J.M., SEV-2017-0718 to C.P., project PID2020-113156GB-I00/AEI /10.13039/501100011033 to C.P.]; and the “HAPDE”. The authors acknowledge the support to this project from the Academy of Finland project (314829) of Tuomas Hytönen.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright