Show simple item record

dc.contributor.authorTerziyan, Vagan
dc.contributor.authorVitko, Oleksandra
dc.date.accessioned2024-03-27T12:44:21Z
dc.date.available2024-03-27T12:44:21Z
dc.date.issued2024
dc.identifier.citationTerziyan, V., & Vitko, O. (2024). Taxonomy-Informed Neural Networks for Smart Manufacturing. <i>Procedia Computer Science</i>, <i>232</i>, 1388-1399. <a href="https://doi.org/10.1016/j.procs.2024.01.137" target="_blank">https://doi.org/10.1016/j.procs.2024.01.137</a>
dc.identifier.otherCONVID_207725426
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/94097
dc.description.abstractA neural network (NN) is known to be an efficient and learnable tool supporting decision-making processes particularly in Industry 4.0. The majority of NNs are data-driven and, therefore, depend on training data quantity and quality. The current trend in enhancing data-driven models with knowledge-based models promises to enable effective NNs with less data. So-called physics-informed NNs use additional knowledge from computational science to improve NN training. Quite much of the knowledge is available as logical constraints from domain ontologies, and NNs may benefit from using it. In this paper, we study the concept of Taxonomy-Informed NN (TINN), which combines data-driven training of NNs with ontological knowledge. We study different patterns of NN training with additional knowledge on class-subclass hierarchies and instance-class relationships with potential for federated learning. Our experiments show that additional knowledge, which influences TINNs’ training process through the loss function at backpropagation, improves the quality of trained models. See presentation slides: https://ai.it.jyu.fi/ISM-2023-TINN.pptxen
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesProcedia Computer Science
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherneural networks
dc.subject.othermachine learning
dc.subject.otherinformed machine learning
dc.subject.otherphysics-informed neural networks
dc.subject.othertaxonomy
dc.subject.otherIndustry 4.0
dc.titleTaxonomy-Informed Neural Networks for Smart Manufacturing
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202403272641
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1388-1399
dc.relation.issn1877-0509
dc.relation.volume232
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Authors. Published by Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokoneoppiminen
dc.subject.ysoneuroverkot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.procs.2024.01.137
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0