dc.contributor.author | Terziyan, Vagan | |
dc.contributor.author | Tiihonen, Timo | |
dc.date.accessioned | 2024-03-27T12:38:50Z | |
dc.date.available | 2024-03-27T12:38:50Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Terziyan, V., & Tiihonen, T. (2024). Using Cloning-GAN Architecture to Unlock the Secrets of Smart Manufacturing : Replication of Cognitive Models. <i>Procedia Computer Science</i>, <i>232</i>, 890-902. <a href="https://doi.org/10.1016/j.procs.2024.01.089" target="_blank">https://doi.org/10.1016/j.procs.2024.01.089</a> | |
dc.identifier.other | CONVID_207724540 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/94096 | |
dc.description.abstract | As Industry 4.0 and 5.0 evolve to be highly automated but human-centric, there is a need for process modeling based on digital replicas of physical objects including humans. Knowledge distillation and cognitive cloning offer a way to train operational copies of decision-making black boxes, or donors, without requiring additional data. In this paper, we propose an architecture and analytics for a generative adversarial network, called Cloning-GAN, which enables donor-clone knowledge transfer, including the donor's individual biases. The architecture involves generating challenging samples to be labeled by the donor and used as training data for the clone. We consider several multicriteria requirements for the generated data, including closeness to the decision boundary, uniform distribution in the decision space, maximal confusion for the donor, and challenge for the clone. We present various strategies to balance these conflicting criteria forcing the clone learning quickly the hidden cognitive skills and biases of the donor.
See presentation slides: https://ai.it.jyu.fi/ISM-2023-Cloning_GAN.pptx | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Procedia Computer Science | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | smart manufacturing | |
dc.subject.other | digital twins | |
dc.subject.other | cognitive clones | |
dc.subject.other | knowledge transfer | |
dc.subject.other | knowledge distillation | |
dc.subject.other | generative adversarial network | |
dc.subject.other | adversarial distillation | |
dc.title | Using Cloning-GAN Architecture to Unlock the Secrets of Smart Manufacturing : Replication of Cognitive Models | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202403272640 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 890-902 | |
dc.relation.issn | 1877-0509 | |
dc.relation.volume | 232 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | tiedonsiirto | |
dc.subject.yso | kopiot | |
dc.subject.yso | kloonaus | |
dc.subject.yso | osaamisen siirto | |
dc.subject.yso | kloonit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5429 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p14833 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17448 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10345 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20737 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.procs.2024.01.089 | |
dc.type.okm | A1 | |