
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY-NC-ND 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0/

Using Cloning-GAN Architecture to Unlock the Secrets of Smart Manufacturing :
Replication of Cognitive Models

© 2024 the Authors

Published version

Terziyan, Vagan; Tiihonen, Timo

Terziyan, V., & Tiihonen, T. (2024). Using Cloning-GAN Architecture to Unlock the Secrets of
Smart Manufacturing : Replication of Cognitive Models. Procedia Computer Science, 232, 890-
902. https://doi.org/10.1016/j.procs.2024.01.089

2024

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 232 (2024) 890–902

1877-0509 © 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Industry 4.0 and
Smart Manufacturing
10.1016/j.procs.2024.01.089

10.1016/j.procs.2024.01.089 1877-0509

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Industry 4.0 and Smart Manufacturing

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Industry 4.0 and Smart Manufacturing

5th International Conference on Industry 4.0 and Smart Manufacturing

Using Cloning-GAN Architecture to Unlock the Secrets of
Smart Manufacturing: Replication of Cognitive Models

Vagan Terziyan a,*, Timo Tiihonen a
a Faculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland

Abstract

As Industry 4.0 and 5.0 evolve to be highly automated but human-centric, there is a need for process modeling based on digital
replicas of physical objects including humans. Knowledge distillation and cognitive cloning offer a way to train operational copies
of decision-making black boxes, or donors, without requiring additional data. In this paper, we propose an architecture and analytics
for a generative adversarial network, called Cloning-GAN, which enables donor-clone knowledge transfer, including the donor’s
individual biases. The architecture involves generating challenging samples to be labeled by the donor and used as training data
for the clone. We consider several multicriteria requirements for the generated data, including closeness to the decision boundary,
uniform distribution in the decision space, maximal confusion for the donor, and challenge for the clone. We present various
strategies to balance these conflicting criteria forcing the clone learning quickly the hidden cognitive skills and biases of the donor.

© 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Industry 4.0 and Smart
Manufacturing
Keywords: Smart Manufacturing; digital twins; cognitive clones; knowledge transfer; knowledge distillation; Generative Adversarial Network;
adversarial distillation

1. Introduction

Modelling and simulation enhanced with emergent technologies is a key for efficient Industry 4.0 and beyond,
including smart manufacturing [1]. In addition to digital twins [2] simulating a physical entity or operation, we can
observe a strong trend towards human-centric cyber-physical production systems [3] driven by mental models and
smart operators [4] aiming at human values [5], including digital cognitive clones of humans [6] and groups [7].

* Corresponding author. E-mail address: vagan.terziyan@jyu.fi

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Industry 4.0 and Smart Manufacturing

5th International Conference on Industry 4.0 and Smart Manufacturing

Using Cloning-GAN Architecture to Unlock the Secrets of
Smart Manufacturing: Replication of Cognitive Models

Vagan Terziyan a,*, Timo Tiihonen a
a Faculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland

Abstract

As Industry 4.0 and 5.0 evolve to be highly automated but human-centric, there is a need for process modeling based on digital
replicas of physical objects including humans. Knowledge distillation and cognitive cloning offer a way to train operational copies
of decision-making black boxes, or donors, without requiring additional data. In this paper, we propose an architecture and analytics
for a generative adversarial network, called Cloning-GAN, which enables donor-clone knowledge transfer, including the donor’s
individual biases. The architecture involves generating challenging samples to be labeled by the donor and used as training data
for the clone. We consider several multicriteria requirements for the generated data, including closeness to the decision boundary,
uniform distribution in the decision space, maximal confusion for the donor, and challenge for the clone. We present various
strategies to balance these conflicting criteria forcing the clone learning quickly the hidden cognitive skills and biases of the donor.

© 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Industry 4.0 and Smart
Manufacturing
Keywords: Smart Manufacturing; digital twins; cognitive clones; knowledge transfer; knowledge distillation; Generative Adversarial Network;
adversarial distillation

1. Introduction

Modelling and simulation enhanced with emergent technologies is a key for efficient Industry 4.0 and beyond,
including smart manufacturing [1]. In addition to digital twins [2] simulating a physical entity or operation, we can
observe a strong trend towards human-centric cyber-physical production systems [3] driven by mental models and
smart operators [4] aiming at human values [5], including digital cognitive clones of humans [6] and groups [7].

* Corresponding author. E-mail address: vagan.terziyan@jyu.fi

2 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000

Emergent development of such smart assets results in significant benefits for smart manufacturing, making it more
efficient, safer, and capable of producing high-quality products. Assisting technologies to enable digital replica of
industrial reality (e.g., in the form of smart models, twins, clones, etc.) include machine (deep) learning [8], knowledge
transfer [9], knowledge distillation [10], particularly adversarial distillation [11] among others.

In this paper, we introduce an adversarial cloning architecture capable of making digital replicas of hidden cognitive
assets with respect to their individual biases. The architecture is supposed to be a kind of adversarial distillation driven
by a generative adversarial network with a special configuration and objectives regarding the generator and
discriminator networks. It facilitates supervised machine learning of the clone model due to a smart way to generate
challenging inputs for the donor (the target smart and black-box asset for the clone), who is supposed to act as a
supervisor in such an adversarial learning process. The multicriteria-driven generator (adversarial facilitator) is the
key cloning enabler and the major innovation in the suggested architecture.

The following text of the paper is organized as follows: in Section 2, we present the main contribution of the paper,
i.e., the intended cloning architecture; in Section 3, we present the related work; in Section 4 we discuss the added
value of this study compared to our previous studies regarding cloning architecture; and we conclude in Section 5.

2. Introduction to Cloning-GAN

In this section, we are going to introduce a new architecture capable of unlocking and replication of hidden and
smart industrial assets, including human decision-makers and other digital, cognitive and data-driven (e.g., machine
learning based) models.

2.1. DONOR, cloning, and CLONE

Assume we have a cognitive model aka black box (abstract, physical, cyber, social, etc.) named as DONOR and
represented by a hidden “labeling function” 𝓕𝓕: [0,1]𝑛𝑛 ⟼ ∆𝑐𝑐 defined as follows:

(a) The domain of 𝓕𝓕 is defined by an Euclidean space ℝ𝑛𝑛 bounded by a 𝒏𝒏-dimensional unit hypercube: [0,1]𝑛𝑛,
each 𝑖𝑖-th point of which is an 𝒏𝒏-dimensional vector 𝑥⃗𝑥𝑖𝑖 of rational values, aka coordinates of some object of
potential labeling:

[0,1]𝑛𝑛 = {∀𝑥⃗𝑥𝑖𝑖: (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ∈ ℝ𝑛𝑛|𝑥𝑥1 ∈ [0,1], 𝑥𝑥2 ∈ [0,1], … , 𝑥𝑥𝑛𝑛 ∈ [0,1]};
(b) The range of 𝓕𝓕 is defined by the unit 𝒄𝒄-simplex ∆𝑐𝑐 (i.e., the 𝒄𝒄-dimensional probability simplex), each 𝑖𝑖-th point

of which is a 𝒄𝒄-dimensional vector 𝑝𝑝𝑖𝑖 of probabilities [regarding each of 𝒄𝒄 possible class labels from the set
𝕃𝕃 = {𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑐𝑐} assigned to the corresponding object represented by point 𝑥⃗𝑥𝑖𝑖 within the domain space]:

∆𝑐𝑐= {∀𝑝𝑝𝑖𝑖: (𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐) ∈ [0,1]𝑐𝑐| ∑ 𝑝𝑝𝑘𝑘𝑐𝑐
𝑘𝑘=1 = 1};

c) ∀𝑥⃗𝑥𝑖𝑖: (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ∈ [0,1]𝑛𝑛, ∃! 𝑝𝑝𝑖𝑖: (𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐)𝑖𝑖 ∈ ∆𝑐𝑐, 𝑝𝑝𝑖𝑖 = 𝓕𝓕(𝑥⃗𝑥𝑖𝑖).
Simply speaking, a DONOR behaves as a labeling (classification) function (like a neural network), which takes a

vector of numeric values (normalized to [0,1]) of some target object features as an input and outputs the probability
distribution of that object having a particular label (i.e., belonging to a particular class) among several possible ones.

Cloning is a supervised learning process, in which the DONOR is a supervisor (i.e., labels the training set
samples), and the task is to train the neural network model as a CLONE of the DONOR, i.e., to learn the hidden
labeling function 𝓕𝓕 defined above, as precisely as possible. For similar tasks, the traditionally used term is “knowledge
distillation”. However, we are using the “cloning” term to follow consistently the terminology from our former articles
where the ultimate objective was formulated as designing digital cognitive clones of humans (as decision-makers) and
groups of collective hybrid intelligence (see, e.g. [12], [7], [13], [6], and [14]).

Cloning-GAN architecture (see Fig. 1), is a special kind of Generative Adversarial Network (GAN) architecture
(see review on GANs in [15]), and it is suggested to facilitate cloning process by smart generation of special
(challenging or adversarial) samples-as-queries for the DONOR for labeling and then synchronously and
incrementally train the CLONE on the basis of generated and labeled samples.

	 Vagan Terziyan et al. / Procedia Computer Science 232 (2024) 890–902� 891

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Industry 4.0 and Smart Manufacturing

5th International Conference on Industry 4.0 and Smart Manufacturing

Using Cloning-GAN Architecture to Unlock the Secrets of
Smart Manufacturing: Replication of Cognitive Models

Vagan Terziyan a,*, Timo Tiihonen a
a Faculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland

Abstract

As Industry 4.0 and 5.0 evolve to be highly automated but human-centric, there is a need for process modeling based on digital
replicas of physical objects including humans. Knowledge distillation and cognitive cloning offer a way to train operational copies
of decision-making black boxes, or donors, without requiring additional data. In this paper, we propose an architecture and analytics
for a generative adversarial network, called Cloning-GAN, which enables donor-clone knowledge transfer, including the donor’s
individual biases. The architecture involves generating challenging samples to be labeled by the donor and used as training data
for the clone. We consider several multicriteria requirements for the generated data, including closeness to the decision boundary,
uniform distribution in the decision space, maximal confusion for the donor, and challenge for the clone. We present various
strategies to balance these conflicting criteria forcing the clone learning quickly the hidden cognitive skills and biases of the donor.

© 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Industry 4.0 and Smart
Manufacturing
Keywords: Smart Manufacturing; digital twins; cognitive clones; knowledge transfer; knowledge distillation; Generative Adversarial Network;
adversarial distillation

1. Introduction

Modelling and simulation enhanced with emergent technologies is a key for efficient Industry 4.0 and beyond,
including smart manufacturing [1]. In addition to digital twins [2] simulating a physical entity or operation, we can
observe a strong trend towards human-centric cyber-physical production systems [3] driven by mental models and
smart operators [4] aiming at human values [5], including digital cognitive clones of humans [6] and groups [7].

* Corresponding author. E-mail address: vagan.terziyan@jyu.fi

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2023) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Industry 4.0 and Smart Manufacturing

5th International Conference on Industry 4.0 and Smart Manufacturing

Using Cloning-GAN Architecture to Unlock the Secrets of
Smart Manufacturing: Replication of Cognitive Models

Vagan Terziyan a,*, Timo Tiihonen a
a Faculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland

Abstract

As Industry 4.0 and 5.0 evolve to be highly automated but human-centric, there is a need for process modeling based on digital
replicas of physical objects including humans. Knowledge distillation and cognitive cloning offer a way to train operational copies
of decision-making black boxes, or donors, without requiring additional data. In this paper, we propose an architecture and analytics
for a generative adversarial network, called Cloning-GAN, which enables donor-clone knowledge transfer, including the donor’s
individual biases. The architecture involves generating challenging samples to be labeled by the donor and used as training data
for the clone. We consider several multicriteria requirements for the generated data, including closeness to the decision boundary,
uniform distribution in the decision space, maximal confusion for the donor, and challenge for the clone. We present various
strategies to balance these conflicting criteria forcing the clone learning quickly the hidden cognitive skills and biases of the donor.

© 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 5th International Conference on Industry 4.0 and Smart
Manufacturing
Keywords: Smart Manufacturing; digital twins; cognitive clones; knowledge transfer; knowledge distillation; Generative Adversarial Network;
adversarial distillation

1. Introduction

Modelling and simulation enhanced with emergent technologies is a key for efficient Industry 4.0 and beyond,
including smart manufacturing [1]. In addition to digital twins [2] simulating a physical entity or operation, we can
observe a strong trend towards human-centric cyber-physical production systems [3] driven by mental models and
smart operators [4] aiming at human values [5], including digital cognitive clones of humans [6] and groups [7].

* Corresponding author. E-mail address: vagan.terziyan@jyu.fi

2 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000

Emergent development of such smart assets results in significant benefits for smart manufacturing, making it more
efficient, safer, and capable of producing high-quality products. Assisting technologies to enable digital replica of
industrial reality (e.g., in the form of smart models, twins, clones, etc.) include machine (deep) learning [8], knowledge
transfer [9], knowledge distillation [10], particularly adversarial distillation [11] among others.

In this paper, we introduce an adversarial cloning architecture capable of making digital replicas of hidden cognitive
assets with respect to their individual biases. The architecture is supposed to be a kind of adversarial distillation driven
by a generative adversarial network with a special configuration and objectives regarding the generator and
discriminator networks. It facilitates supervised machine learning of the clone model due to a smart way to generate
challenging inputs for the donor (the target smart and black-box asset for the clone), who is supposed to act as a
supervisor in such an adversarial learning process. The multicriteria-driven generator (adversarial facilitator) is the
key cloning enabler and the major innovation in the suggested architecture.

The following text of the paper is organized as follows: in Section 2, we present the main contribution of the paper,
i.e., the intended cloning architecture; in Section 3, we present the related work; in Section 4 we discuss the added
value of this study compared to our previous studies regarding cloning architecture; and we conclude in Section 5.

2. Introduction to Cloning-GAN

In this section, we are going to introduce a new architecture capable of unlocking and replication of hidden and
smart industrial assets, including human decision-makers and other digital, cognitive and data-driven (e.g., machine
learning based) models.

2.1. DONOR, cloning, and CLONE

Assume we have a cognitive model aka black box (abstract, physical, cyber, social, etc.) named as DONOR and
represented by a hidden “labeling function” 𝓕𝓕: [0,1]𝑛𝑛 ⟼ ∆𝑐𝑐 defined as follows:

(a) The domain of 𝓕𝓕 is defined by an Euclidean space ℝ𝑛𝑛 bounded by a 𝒏𝒏-dimensional unit hypercube: [0,1]𝑛𝑛,
each 𝑖𝑖-th point of which is an 𝒏𝒏-dimensional vector 𝑥⃗𝑥𝑖𝑖 of rational values, aka coordinates of some object of
potential labeling:

[0,1]𝑛𝑛 = {∀𝑥⃗𝑥𝑖𝑖: (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ∈ ℝ𝑛𝑛|𝑥𝑥1 ∈ [0,1], 𝑥𝑥2 ∈ [0,1], … , 𝑥𝑥𝑛𝑛 ∈ [0,1]};
(b) The range of 𝓕𝓕 is defined by the unit 𝒄𝒄-simplex ∆𝑐𝑐 (i.e., the 𝒄𝒄-dimensional probability simplex), each 𝑖𝑖-th point

of which is a 𝒄𝒄-dimensional vector 𝑝𝑝𝑖𝑖 of probabilities [regarding each of 𝒄𝒄 possible class labels from the set
𝕃𝕃 = {𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑐𝑐} assigned to the corresponding object represented by point 𝑥⃗𝑥𝑖𝑖 within the domain space]:

∆𝑐𝑐= {∀𝑝𝑝𝑖𝑖: (𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐) ∈ [0,1]𝑐𝑐| ∑ 𝑝𝑝𝑘𝑘𝑐𝑐
𝑘𝑘=1 = 1};

c) ∀𝑥⃗𝑥𝑖𝑖: (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) ∈ [0,1]𝑛𝑛, ∃! 𝑝𝑝𝑖𝑖: (𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐)𝑖𝑖 ∈ ∆𝑐𝑐, 𝑝𝑝𝑖𝑖 = 𝓕𝓕(𝑥⃗𝑥𝑖𝑖).
Simply speaking, a DONOR behaves as a labeling (classification) function (like a neural network), which takes a

vector of numeric values (normalized to [0,1]) of some target object features as an input and outputs the probability
distribution of that object having a particular label (i.e., belonging to a particular class) among several possible ones.

Cloning is a supervised learning process, in which the DONOR is a supervisor (i.e., labels the training set
samples), and the task is to train the neural network model as a CLONE of the DONOR, i.e., to learn the hidden
labeling function 𝓕𝓕 defined above, as precisely as possible. For similar tasks, the traditionally used term is “knowledge
distillation”. However, we are using the “cloning” term to follow consistently the terminology from our former articles
where the ultimate objective was formulated as designing digital cognitive clones of humans (as decision-makers) and
groups of collective hybrid intelligence (see, e.g. [12], [7], [13], [6], and [14]).

Cloning-GAN architecture (see Fig. 1), is a special kind of Generative Adversarial Network (GAN) architecture
(see review on GANs in [15]), and it is suggested to facilitate cloning process by smart generation of special
(challenging or adversarial) samples-as-queries for the DONOR for labeling and then synchronously and
incrementally train the CLONE on the basis of generated and labeled samples.

892	 Vagan Terziyan et al. / Procedia Computer Science 232 (2024) 890–902 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000 3

Fig 1. Cloning-GAN architecture

GENERATOR vs CLONE “game” in Cloning-GAN is driven by the conflicting objectives of the two

synchronously trained adversaries. The objective of the GENERATOR training is to generate the most challenging
(adversarial, puzzling) training samples for CLONE. The objective of the CLONE training is the capability to predict
(guess, imitate) the labeling outcomes (especially biased ones) from the DONOR as close as possible in the
challenging cases. The loss function for the CLONE is clear – it provides punishment feedback for the mismatch
between its own outcomes and corresponding outcomes from the DONOR. Therefore, the most sophisticated task in
the Cloning-GAN architecture is to define the loss function for the GENERATOR, which is naturally more complex
one because it has to take into account several different criteria for the quality of generated samples.

Let us provide more details on the loss functions regarding GENERATOR vs CLONE training.

2.2. CLONE loss in Cloning-GAN

The loss of the CLONE in each sample 𝐱⃗⃗𝐱𝒊𝒊 (denoted as 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ(𝐱⃗⃗𝐱𝒊𝒊)) is a normalized measure (𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ(𝐱⃗⃗𝐱𝒊𝒊) ∈ [0,1])
of the two probability distribution vectors’ mismatch (aka “Turing” mismatch): how CLONE addresses 𝐱⃗⃗𝐱𝒊𝒊 (i.e.,
𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊): (𝑝̂𝑝1, 𝑝̂𝑝2, … , 𝑝̂𝑝𝑐𝑐)) vs how DONOR addresses 𝐱⃗⃗𝐱𝒊𝒊 (i.e., 𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊): (𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐)):

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ(𝐱⃗⃗𝐱𝒊𝒊) = Mismatch[𝓕̂𝓕(x⃗⃗i) ↔ 𝓕𝓕(x⃗⃗i)] =
1
√2 ∙ 𝒅𝒅(𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊), 𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊)) = √(𝑝𝑝1−𝑝𝑝1)2+(𝑝𝑝2−𝑝𝑝2)2+⋯+(𝑝𝑝𝑐𝑐−𝑝𝑝𝑐𝑐)2

2 , (1)

where 𝒅𝒅 – Euclidian distance.
Another, more computationally expensive but also more solid, option would be use of Jensen-Shannon Distance

instead of Euclidean distance in formula (1). It is a metric [16] bounded to [0,1]; it is based on the concept of
information entropy; and it is specifically designed to measure distance between probability distributions, while
Euclidean distance is a general-purpose measure. Therefore, another option of the CLONE’s loss formula would be:

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ
JSD(𝐱⃗⃗𝐱𝒊𝒊) = 𝐉𝐉𝐉𝐉𝐉𝐉(𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊), 𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊)) = √1

2 ∙ ∑ [𝑝̂𝑝𝑘𝑘 ∙ log2
2∙𝑝𝑝𝑘𝑘

𝑝𝑝𝑘𝑘+𝑝𝑝𝑘𝑘
+ 𝑝𝑝𝑘𝑘 ∙ log2

2∙𝑝𝑝𝑘𝑘
𝑝𝑝𝑘𝑘+𝑝𝑝𝑘𝑘

]𝑐𝑐
𝑘𝑘=1 , (1*)

 where 𝐉𝐉𝐉𝐉𝐉𝐉 – Jensen-Shannon Distance defined as a metric in [16].

	 Vagan Terziyan et al. / Procedia Computer Science 232 (2024) 890–902� 893 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000 3

Fig 1. Cloning-GAN architecture

GENERATOR vs CLONE “game” in Cloning-GAN is driven by the conflicting objectives of the two

synchronously trained adversaries. The objective of the GENERATOR training is to generate the most challenging
(adversarial, puzzling) training samples for CLONE. The objective of the CLONE training is the capability to predict
(guess, imitate) the labeling outcomes (especially biased ones) from the DONOR as close as possible in the
challenging cases. The loss function for the CLONE is clear – it provides punishment feedback for the mismatch
between its own outcomes and corresponding outcomes from the DONOR. Therefore, the most sophisticated task in
the Cloning-GAN architecture is to define the loss function for the GENERATOR, which is naturally more complex
one because it has to take into account several different criteria for the quality of generated samples.

Let us provide more details on the loss functions regarding GENERATOR vs CLONE training.

2.2. CLONE loss in Cloning-GAN

The loss of the CLONE in each sample 𝐱⃗⃗𝐱𝒊𝒊 (denoted as 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ(𝐱⃗⃗𝐱𝒊𝒊)) is a normalized measure (𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ(𝐱⃗⃗𝐱𝒊𝒊) ∈ [0,1])
of the two probability distribution vectors’ mismatch (aka “Turing” mismatch): how CLONE addresses 𝐱⃗⃗𝐱𝒊𝒊 (i.e.,
𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊): (𝑝̂𝑝1, 𝑝̂𝑝2, … , 𝑝̂𝑝𝑐𝑐)) vs how DONOR addresses 𝐱⃗⃗𝐱𝒊𝒊 (i.e., 𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊): (𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐)):

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ(𝐱⃗⃗𝐱𝒊𝒊) = Mismatch[𝓕̂𝓕(x⃗⃗i) ↔ 𝓕𝓕(x⃗⃗i)] =
1
√2 ∙ 𝒅𝒅(𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊), 𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊)) = √(𝑝𝑝1−𝑝𝑝1)2+(𝑝𝑝2−𝑝𝑝2)2+⋯+(𝑝𝑝𝑐𝑐−𝑝𝑝𝑐𝑐)2

2 , (1)

where 𝒅𝒅 – Euclidian distance.
Another, more computationally expensive but also more solid, option would be use of Jensen-Shannon Distance

instead of Euclidean distance in formula (1). It is a metric [16] bounded to [0,1]; it is based on the concept of
information entropy; and it is specifically designed to measure distance between probability distributions, while
Euclidean distance is a general-purpose measure. Therefore, another option of the CLONE’s loss formula would be:

𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ
JSD(𝐱⃗⃗𝐱𝒊𝒊) = 𝐉𝐉𝐉𝐉𝐉𝐉(𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊), 𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊)) = √1

2 ∙ ∑ [𝑝̂𝑝𝑘𝑘 ∙ log2
2∙𝑝𝑝𝑘𝑘

𝑝𝑝𝑘𝑘+𝑝𝑝𝑘𝑘
+ 𝑝𝑝𝑘𝑘 ∙ log2

2∙𝑝𝑝𝑘𝑘
𝑝𝑝𝑘𝑘+𝑝𝑝𝑘𝑘

]𝑐𝑐
𝑘𝑘=1 , (1*)

 where 𝐉𝐉𝐉𝐉𝐉𝐉 – Jensen-Shannon Distance defined as a metric in [16].

4 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000

See some examples below:

𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊): (1,0,0); 𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊): (0,0,1) ⇒ 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ(𝐱⃗⃗𝐱𝒊𝒊) = √(1−0)2+(0−0)2+(0−1)2
2 = 1;

𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊): (1,0,0); 𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊): (0,0,1) ⇒ 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ
JSD(𝐱⃗⃗𝐱𝒊𝒊) = √[1∙𝑙𝑙𝑙𝑙𝑙𝑙2

2∙1
1 +0∙𝑙𝑙𝑙𝑙𝑙𝑙2

2∙0
1]+[0∙𝑙𝑙𝑙𝑙𝑙𝑙2

2∙0
0 +0∙𝑙𝑙𝑙𝑙𝑙𝑙2

2∙0
0]+[0∙𝑙𝑙𝑙𝑙𝑙𝑙2

2∙0
1 +1∙𝑙𝑙𝑙𝑙𝑙𝑙2

2∙1
1]

2 → 1;

𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊): (0.5,0.3,0.2); 𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊): (0.1,0.2,0.7) ⇒ 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ(𝐱⃗⃗𝐱𝒊𝒊) = √(0.5−0.1)2+(0.3−0.2)2+(0.2−0.7)2
2 ≈ 0.458;

𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊): (0.5,0.3,0.2); 𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊): (0.1,0.2,0.7) ⇒ 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ
JSD(𝐱⃗⃗𝐱𝒊𝒊) =

= √[0.5∙𝑙𝑙𝑙𝑙𝑙𝑙2
2∙0.5

0.5+0.1+0.1∙𝑙𝑙𝑙𝑙𝑙𝑙2
2∙0.1

0.5+0.1]+[0.3∙𝑙𝑙𝑙𝑙𝑙𝑙2
2∙0.3

0.3+0.2+0.2∙𝑙𝑙𝑙𝑙𝑙𝑙2
2∙0.2

0.3+0.2]+[0.2∙𝑙𝑙𝑙𝑙𝑙𝑙2
2∙0.2

0.2+0.7+0.7∙𝑙𝑙𝑙𝑙𝑙𝑙2
2∙0.7

0.2+0.7]
2 ≈ 0.467.

2.3. GENERATOR overall loss and its components in Cloning-GAN

The loss of the GENERATOR in each generated sample 𝐱⃗⃗𝐱𝒊𝒊 (denoted as 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝔾𝔾(𝐱⃗⃗𝐱𝒊𝒊)) is constructed from three
loss components as follows:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝔾𝔾(𝐱⃗⃗𝐱𝒊𝒊) = 𝛌𝛌𝐓𝐓 ∙ 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝐱⃗⃗𝐱𝒊𝒊) + 𝛌𝛌𝐂𝐂 ∙ 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐱⃗⃗𝐱𝒊𝒊) + 𝛌𝛌𝐔𝐔 ∙ 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝐱⃗⃗𝐱𝒊𝒊). (2)

The “Turing” component of the GENERATOR’s loss on each generated sample 𝐱⃗⃗𝐱𝒊𝒊 (denoted as 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝐱⃗⃗𝐱𝒊𝒊))
is a normalized measure (∈ [0,1]) of the two probability distribution vectors’ match (aka “Turing” match): how
CLONE addresses 𝐱⃗⃗𝐱𝒊𝒊 (i.e., 𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊): (𝑝̂𝑝1, 𝑝̂𝑝2, … , 𝑝̂𝑝𝑐𝑐)) vs how DONOR addresses 𝐱⃗⃗𝐱𝒊𝒊 (i.e., 𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊): (𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐)):

𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝐱⃗⃗𝐱𝒊𝒊) = Match[𝓕̂𝓕(x⃗⃗i) ↔ 𝓕𝓕(x⃗⃗i)] = 𝟏𝟏 − 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ(𝐱⃗⃗𝐱𝒊𝒊) = 1 − √(𝑝𝑝1−𝑝𝑝1)2+(𝑝𝑝2−𝑝𝑝2)2+⋯+(𝑝𝑝𝑐𝑐−𝑝𝑝𝑐𝑐)2
2 . (3)

 One may notice that “Turing” component of the GENERATOR’s loss on each sample 𝐱⃗⃗𝐱𝒊𝒊 is opposite to the loss
of the CLONE on the same sample, because one of the GENERATOR’s objectives is to generate such samples,
which would be the most difficult ones for the CLONE in predicting the DONOR’s outcomes.

For the same purpose, we can also use a modification of formula (3) if we apply the Jensen-Shannon Distance
defined by formula (1*):

𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓
JSD (𝐱⃗⃗𝐱𝒊𝒊) = 𝟏𝟏 − 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ

JSD(𝐱⃗⃗𝐱𝒊𝒊) = 1 − √1
2 ∙ ∑ [𝑝̂𝑝𝑘𝑘 ∙ log2

2∙𝑝𝑝𝑘𝑘
𝑝𝑝𝑘𝑘+𝑝𝑝𝑘𝑘

+ 𝑝𝑝𝑘𝑘 ∙ log2
2∙𝑝𝑝𝑘𝑘

𝑝𝑝𝑘𝑘+𝑝𝑝𝑘𝑘
]𝑐𝑐

𝑘𝑘=1 . (3*)

See some examples below:

𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊): (1,0,0); 𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊): (0,0,1) ⇒ 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝒙⃗⃗⃗𝒙𝒊𝒊) = 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓
JSD (𝐱⃗⃗𝐱𝒊𝒊) = 1 − 1 = 0;

𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊): (0.3,0.4,0.3); 𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊): (0.2,0.4,0.4) ⇒ 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝒙⃗⃗⃗𝒙𝒊𝒊) = 1 − 0.1 = 0.9;

𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊): (0.3,0.4,0.3); 𝓕̂𝓕(𝐱⃗⃗𝐱𝒊𝒊): (0.2,0.4,0.4) ⇒ 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓
JSD (𝒙⃗⃗⃗𝒙𝒊𝒊) ≈ 1 − 0.111 = 0.889.

Further in the paper, we will use only terms 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳ℂ(𝐱⃗⃗𝐱𝒊𝒊) to represent CLONE loss and 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝐱⃗⃗𝐱𝒊𝒊) to represent
the “Turing” component of the GENERATOR’s loss, assuming that particular computing options for it, either (1) and
(3) or (1*) and (3*), could be chosen depending on the task.

 The “Challenge” component of the GENERATOR’s loss on each generated sample 𝐱⃗⃗𝐱𝒊𝒊 (denoted as
𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐱⃗⃗𝐱𝒊𝒊)) is a normalized measure (∈ [0,1]) of how easy it would be for the DONOR to confidently label
the generated sample or, therefore, how far is the sample from being the “adversarial” one and being able to confuse
the DONOR (i.e., how far is the probability distribution provided by DONOR on sample 𝐱⃗⃗𝐱𝒊𝒊 from the uniform one):

𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐱⃗⃗𝐱𝐢𝐢) =
𝑐𝑐

√𝑐𝑐−1
∙ 𝛔𝛔(𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐) = √𝑐𝑐∙(𝑝𝑝12+𝑝𝑝22+⋯+𝑝𝑝𝑐𝑐2)−1

𝑐𝑐−1 , (4)

where 𝝈𝝈 – standard deviation.

894	 Vagan Terziyan et al. / Procedia Computer Science 232 (2024) 890–902
 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000 5

𝝈𝝈(𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐) = √(𝑝𝑝1−
1
𝑐𝑐)

2
+(𝑝𝑝2−

1
𝑐𝑐)

2
+⋯+(𝑝𝑝𝑐𝑐−

1
𝑐𝑐)

2

𝑐𝑐 = ⋯ =
√𝑐𝑐∙(𝑝𝑝12+𝑝𝑝22+⋯+𝑝𝑝𝑐𝑐2)−1

𝑐𝑐 .

𝐌𝐌𝐌𝐌𝐌𝐌[𝝈𝝈(𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐)] = 𝝈𝝈(1, 0, … , 0) = 𝝈𝝈(0, … , 0, 1) = 𝝈𝝈(0, … ,1, … ,0) = √𝑐𝑐∙(0+⋯+1+⋯+0)−1
𝑐𝑐 = √𝑐𝑐−1

𝑐𝑐 .

𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐱⃗⃗𝐱𝒊𝒊) =
𝝈𝝈(𝑝𝑝1,𝑝𝑝2,…,𝑝𝑝𝑐𝑐)

𝐌𝐌𝐌𝐌𝐌𝐌[𝝈𝝈(𝑝𝑝1,𝑝𝑝2,…,𝑝𝑝𝑐𝑐)]
= 𝑐𝑐

√𝑐𝑐−1
∙ 𝝈𝝈(𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐) =

𝑐𝑐
√𝑐𝑐−1

∙
√𝑐𝑐∙(𝑝𝑝12+𝑝𝑝22+⋯+𝑝𝑝𝑐𝑐2)−1

𝑐𝑐 = √𝑐𝑐∙(𝑝𝑝12+𝑝𝑝22+⋯+𝑝𝑝𝑐𝑐2)−1
𝑐𝑐−1 .

Therefore, 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐱⃗⃗𝐱𝒊𝒊) ∈ [𝟎𝟎, 𝟏𝟏] - aka normalized standard deviation 𝝈𝝈. The more standard deviation 𝝈𝝈 – the
less confusion for the DONOR – the more loss for the GENERATOR.

The “Challenge” component of the GENERATOR’s loss ensures appearance of challenging-and-adversarial
(close to decision boundaries and corner cases) samples, helping the CLONE to learn faster the individual biases of
the DONOR.
See some examples below:

𝓕𝓕(𝒙⃗⃗⃗𝒙𝒊𝒊): (1,0,0) ⇒ 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝒙⃗⃗⃗𝒙𝒊𝒊) = √3∙(12+02+02)−1
2 = 1;

𝓕𝓕(𝒙⃗⃗⃗𝒙𝒊𝒊): (0.5,0.3,0.2) ⇒ 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝒙⃗⃗⃗𝒙𝒊𝒊) = √3∙(0.52+0.32+0.22)−1
2 ≈ 0.26;

𝓕𝓕(𝒙⃗⃗⃗𝒙𝒊𝒊): (
1
3 ,

1
3 ,

1
3) ⇒ 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝒙⃗⃗⃗𝒙𝒊𝒊) = √3∙3∙(13)

2
−1

2 = 0.

It would be important to mention here that the “Challenge” component of the GENERATOR’s loss makes sense
only in such “optimistic” cases when the DONOR responds with the so-called “soft targets”, i.e., not only indicates
the “winning” class but provides the complete “ranking list” with the scores-as-probabilities for each of the
classes involved (the universe here is a disointUnionOf 𝑐𝑐 classes). This case is a typical outcome from the DONOR,
which is a hidden neural network classifier with disclosed output (e.g., softmax) layer. In “the-winner-takes-all”
classification output cases, our probability vector (so called “hard target”) will be represented by one-hot encoded
vector containing one “1” with the rest “0” and, therefore, the “challenge” component of the loss function will always
be constant and equal to √𝑐𝑐−1𝑐𝑐 (see above). However, such “blind” cases will be approached similarly (although less
efficient), i.e., by applying the same formula (2) but without the “Challenge” component in it.

The “Uniformity” component. One of the GENERATOR’s objectives is to generate adversarial samples

“everywhere” (close to uniform distribution) within the decision space bounded by the unit hypercube. “Uniformity”
component of the GENERATOR’s loss regarding each generated sample 𝐱⃗⃗𝐱𝒊𝒊 (denoted as 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝐱⃗⃗𝐱𝒊𝒊)) is a
normalized measure (∈ [0,1]) of how far is the distribution of previously generated samples including the new one
(𝐱⃗⃗𝐱1, 𝐱⃗⃗𝐱2 ,…, 𝐱⃗⃗𝐱𝑖𝑖−1 , 𝐱⃗⃗𝐱𝒊𝒊) from the uniform distribution. In fact, we compare the estimated average-nearest-neighbor-
distance (𝑨𝑨𝒊𝒊) for 𝑖𝑖 samples uniformly distributed within an 𝑛𝑛-dimensional unit hypercube with the actual average-
nearest-neighbour-distance (𝒂𝒂𝒊𝒊) for 𝐱⃗⃗𝐱1, 𝐱⃗⃗𝐱2,…, 𝐱⃗⃗𝐱𝑖𝑖−1 , 𝐱⃗⃗𝐱𝒊𝒊 generated samples (i.e., after 𝒊𝒊th generated sample 𝒙⃗⃗⃗𝒙𝒊𝒊 in 𝒏𝒏-
dimensional unit hypercube) as follows:

𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝐱⃗⃗𝐱𝒊𝒊) = 1 − 𝐌𝐌𝐌𝐌𝐌𝐌(𝐴𝐴𝑖𝑖,𝑎𝑎𝑖𝑖)
𝐌𝐌𝐌𝐌𝐌𝐌(𝐴𝐴𝑖𝑖,𝑎𝑎𝑖𝑖)

, (5)

where 𝑨𝑨𝒊𝒊 = 𝒊𝒊−
𝟏𝟏
𝒏𝒏 is a good heuristic approximation for the intended average nearest neighbor distance from [17];

 𝑎𝑎1 = 1; 𝑎𝑎𝑖𝑖 =
𝟏𝟏
𝒊𝒊 ∙ ∑ 𝐦𝐦𝐦𝐦𝐦𝐦𝒌𝒌=𝟏𝟏,…𝒊𝒊;𝒌𝒌≠𝒋𝒋[𝒅𝒅(𝒙⃗⃗⃗𝒙𝒋𝒋, 𝒙⃗⃗⃗𝒙𝒌𝒌)]𝒊𝒊

𝒋𝒋=𝟏𝟏 (𝒅𝒅 – Euclidian distance).

One may see that this calculation regarding each generated sample takes into account information on previously
generated samples. However, it does not consume much memory for it. See example in Fig. 2. It shows how the
“Uniformity” loss is computed during the iterative process of ten samples’ generation. For each previously generated
sample, this process keeps in its memory only the distance to its nearest neighbor (i.e., collecting the minimal distances
needed to calculate 𝒂𝒂𝒊𝒊) and refines it when a new sample arrives. One may see these minimal distances, to be kept in
memory, outlined within the distance matrixes shown in Fig 2.

	 Vagan Terziyan et al. / Procedia Computer Science 232 (2024) 890–902� 895
 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000 5

𝝈𝝈(𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐) = √(𝑝𝑝1−
1
𝑐𝑐)

2
+(𝑝𝑝2−

1
𝑐𝑐)

2
+⋯+(𝑝𝑝𝑐𝑐−

1
𝑐𝑐)

2

𝑐𝑐 = ⋯ =
√𝑐𝑐∙(𝑝𝑝12+𝑝𝑝22+⋯+𝑝𝑝𝑐𝑐2)−1

𝑐𝑐 .

𝐌𝐌𝐌𝐌𝐌𝐌[𝝈𝝈(𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐)] = 𝝈𝝈(1, 0, … , 0) = 𝝈𝝈(0, … , 0, 1) = 𝝈𝝈(0, … ,1, … ,0) = √𝑐𝑐∙(0+⋯+1+⋯+0)−1
𝑐𝑐 = √𝑐𝑐−1

𝑐𝑐 .

𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐱⃗⃗𝐱𝒊𝒊) =
𝝈𝝈(𝑝𝑝1,𝑝𝑝2,…,𝑝𝑝𝑐𝑐)

𝐌𝐌𝐌𝐌𝐌𝐌[𝝈𝝈(𝑝𝑝1,𝑝𝑝2,…,𝑝𝑝𝑐𝑐)]
= 𝑐𝑐

√𝑐𝑐−1
∙ 𝝈𝝈(𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐) =

𝑐𝑐
√𝑐𝑐−1

∙
√𝑐𝑐∙(𝑝𝑝12+𝑝𝑝22+⋯+𝑝𝑝𝑐𝑐2)−1

𝑐𝑐 = √𝑐𝑐∙(𝑝𝑝12+𝑝𝑝22+⋯+𝑝𝑝𝑐𝑐2)−1
𝑐𝑐−1 .

Therefore, 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐱⃗⃗𝐱𝒊𝒊) ∈ [𝟎𝟎, 𝟏𝟏] - aka normalized standard deviation 𝝈𝝈. The more standard deviation 𝝈𝝈 – the
less confusion for the DONOR – the more loss for the GENERATOR.

The “Challenge” component of the GENERATOR’s loss ensures appearance of challenging-and-adversarial
(close to decision boundaries and corner cases) samples, helping the CLONE to learn faster the individual biases of
the DONOR.
See some examples below:

𝓕𝓕(𝒙⃗⃗⃗𝒙𝒊𝒊): (1,0,0) ⇒ 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝒙⃗⃗⃗𝒙𝒊𝒊) = √3∙(12+02+02)−1
2 = 1;

𝓕𝓕(𝒙⃗⃗⃗𝒙𝒊𝒊): (0.5,0.3,0.2) ⇒ 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝒙⃗⃗⃗𝒙𝒊𝒊) = √3∙(0.52+0.32+0.22)−1
2 ≈ 0.26;

𝓕𝓕(𝒙⃗⃗⃗𝒙𝒊𝒊): (
1
3 ,

1
3 ,

1
3) ⇒ 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝒙⃗⃗⃗𝒙𝒊𝒊) = √3∙3∙(13)

2
−1

2 = 0.

It would be important to mention here that the “Challenge” component of the GENERATOR’s loss makes sense
only in such “optimistic” cases when the DONOR responds with the so-called “soft targets”, i.e., not only indicates
the “winning” class but provides the complete “ranking list” with the scores-as-probabilities for each of the
classes involved (the universe here is a disointUnionOf 𝑐𝑐 classes). This case is a typical outcome from the DONOR,
which is a hidden neural network classifier with disclosed output (e.g., softmax) layer. In “the-winner-takes-all”
classification output cases, our probability vector (so called “hard target”) will be represented by one-hot encoded
vector containing one “1” with the rest “0” and, therefore, the “challenge” component of the loss function will always
be constant and equal to √𝑐𝑐−1𝑐𝑐 (see above). However, such “blind” cases will be approached similarly (although less
efficient), i.e., by applying the same formula (2) but without the “Challenge” component in it.

The “Uniformity” component. One of the GENERATOR’s objectives is to generate adversarial samples

“everywhere” (close to uniform distribution) within the decision space bounded by the unit hypercube. “Uniformity”
component of the GENERATOR’s loss regarding each generated sample 𝐱⃗⃗𝐱𝒊𝒊 (denoted as 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝐱⃗⃗𝐱𝒊𝒊)) is a
normalized measure (∈ [0,1]) of how far is the distribution of previously generated samples including the new one
(𝐱⃗⃗𝐱1, 𝐱⃗⃗𝐱2 ,…, 𝐱⃗⃗𝐱𝑖𝑖−1 , 𝐱⃗⃗𝐱𝒊𝒊) from the uniform distribution. In fact, we compare the estimated average-nearest-neighbor-
distance (𝑨𝑨𝒊𝒊) for 𝑖𝑖 samples uniformly distributed within an 𝑛𝑛-dimensional unit hypercube with the actual average-
nearest-neighbour-distance (𝒂𝒂𝒊𝒊) for 𝐱⃗⃗𝐱1, 𝐱⃗⃗𝐱2,…, 𝐱⃗⃗𝐱𝑖𝑖−1 , 𝐱⃗⃗𝐱𝒊𝒊 generated samples (i.e., after 𝒊𝒊th generated sample 𝒙⃗⃗⃗𝒙𝒊𝒊 in 𝒏𝒏-
dimensional unit hypercube) as follows:

𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝐱⃗⃗𝐱𝒊𝒊) = 1 − 𝐌𝐌𝐌𝐌𝐌𝐌(𝐴𝐴𝑖𝑖,𝑎𝑎𝑖𝑖)
𝐌𝐌𝐌𝐌𝐌𝐌(𝐴𝐴𝑖𝑖,𝑎𝑎𝑖𝑖)

, (5)

where 𝑨𝑨𝒊𝒊 = 𝒊𝒊−
𝟏𝟏
𝒏𝒏 is a good heuristic approximation for the intended average nearest neighbor distance from [17];

 𝑎𝑎1 = 1; 𝑎𝑎𝑖𝑖 =
𝟏𝟏
𝒊𝒊 ∙ ∑ 𝐦𝐦𝐦𝐦𝐦𝐦𝒌𝒌=𝟏𝟏,…𝒊𝒊;𝒌𝒌≠𝒋𝒋[𝒅𝒅(𝒙⃗⃗⃗𝒙𝒋𝒋, 𝒙⃗⃗⃗𝒙𝒌𝒌)]𝒊𝒊

𝒋𝒋=𝟏𝟏 (𝒅𝒅 – Euclidian distance).

One may see that this calculation regarding each generated sample takes into account information on previously
generated samples. However, it does not consume much memory for it. See example in Fig. 2. It shows how the
“Uniformity” loss is computed during the iterative process of ten samples’ generation. For each previously generated
sample, this process keeps in its memory only the distance to its nearest neighbor (i.e., collecting the minimal distances
needed to calculate 𝒂𝒂𝒊𝒊) and refines it when a new sample arrives. One may see these minimal distances, to be kept in
memory, outlined within the distance matrixes shown in Fig 2.

6 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000

Fig 2. Example illustrating “Uniformity” component of Cloning-GAN (based on iterative computing regarding 10 generated samples)

2.4. Trade-off among the GENERATOR’s loss components

Performance of the GENERATOR and, therefore, the whole Cloning-GAN will depend on the choice of the
importance weights 𝝀𝝀𝑻𝑻, 𝝀𝝀𝑪𝑪, 𝝀𝝀𝑼𝑼, which correspond to different components of the GENERATOR’s loss from formula
(2). Let us consider different approaches to balance with these weights, which will correspond to different options of
the Cloning-GAN architecture.

The Basic Cloning-GAN (B-C-GAN) architecture supposes manual initialization and control of weights 𝝀𝝀𝑻𝑻, 𝝀𝝀𝑪𝑪, 𝝀𝝀𝑼𝑼
(assuming that 𝝀𝝀𝑻𝑻 + 𝝀𝝀𝑪𝑪 + 𝝀𝝀𝑼𝑼 = 𝟏𝟏), which will be considered as constants until changed manually if needed.

The Dynamic Cloning-GAN (D-C-GAN) architecture assumes the dependence of the weights, which correspond
to different components of the GENERATOR’s loss from formula (2), on the current learning iteration (epoch) 𝒊𝒊 as
follows:

896	 Vagan Terziyan et al. / Procedia Computer Science 232 (2024) 890–902
 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000 7

𝝀𝝀𝑻𝑻(𝒊𝒊) + 𝝀𝝀𝑪𝑪 (𝒊𝒊) + 𝝀𝝀𝑼𝑼(𝒊𝒊) = 1;
𝝀𝝀𝑻𝑻(𝒊𝒊) = 0.5, i.e., constant, which takes half of the overall importance always during training;

𝝀𝝀𝑪𝑪(𝒊𝒊) =
𝑖𝑖

2∙(𝑖𝑖+𝑖𝑖∗), i.e., monotonously increasing importance from 0 (at the beginning) to 0.5 (at infinity);

𝝀𝝀𝑼𝑼(𝒊𝒊) =
𝑖𝑖∗

𝟐𝟐∙(𝒊𝒊+𝒊𝒊∗), i.e., monotonously decreasing importance from 0.5 (at the beginning) to 0 (at infinity),
where 𝒊𝒊∗ is the controlling parameter (integer >1, which indicates at which iteration 𝝀𝝀𝑪𝑪 = 𝝀𝝀𝑼𝑼 = 0.25).

See illustrative explanation in Fig. 3.

Fig 3. Plots show a trade-off among the importance of the GENERATOR’s loss function components during training.

Therefore, for D-C-GAN, the loss of the GENERATOR from formula (2) on each generated sample 𝐱⃗⃗𝐱𝒊𝒊 could be

updated as follows:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝔾𝔾(𝐱⃗⃗𝐱𝒊𝒊) = 0.5 ∙ 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝐱⃗⃗𝐱𝒊𝒊) +
𝑖𝑖

2∙(𝑖𝑖+𝑖𝑖∗) ∙ 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐱⃗⃗𝐱𝒊𝒊) +
𝑖𝑖∗

𝟐𝟐∙(𝒊𝒊+𝒊𝒊∗) ∙ 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝐱⃗⃗𝐱𝒊𝒊). (6)

Training process performance regarding the GENERATOR and, therefore, the CLONE can be controlled just by
one parameter 𝑖𝑖∗ depending on the cloning case specifics.

We consider the “Turing” component to be equally important (50% of the overall importance) during the training
process because it directly influences the performance of the CLONE to simulate the DONOR closely enough.

We assume that the ability of the GENERATOR to generate “diverse” (everywhere within the decision space)
rather than “difficult” (challenging, adversarial) inputs for the DONOR-CLONE couple is more important at the
beginning at the training process, and the trend towards more challenging rather than different inputs will become
influential later in the training process. The trend itself (i.e., how fast the capability to generate challenging inputs will
become as important as the capability to generate diverse inputs) could be controlled by parameter 𝒊𝒊∗.

The reasonability for dynamic weights of different loss components is yet to be checked experimentally. The
intuition is that Cloning-GANs (of the D-C-GAN option) may converge better when some criterion is dominating at
the beginning of the process and another one - at the end. GENERATOR, like a kind of “young journalist”, in the
beginning, learns to ask “different” questions and, when mature with this skill, switches to training his own capability
of asking “difficult” questions also.

The “Three Musketeers” (“All for one and one for all”) Cloning-GAN (3M-C-GAN) architecture differs
significantly from the previous two architectures. It supposes splitting the GENERATOR to three GENERATORs
(“Turing” or 𝔾𝔾𝐓𝐓, “Challenge” or 𝔾𝔾𝐂𝐂, and “Uniformity” or 𝔾𝔾𝐔𝐔), one responsible for each loss component from formula
(2). Before that, we considered only the incremental learning option for the Cloning-GAN architecture, which could
be extended to the “minibatch” learning case when all the loss components are computed as aggregates over few

	 Vagan Terziyan et al. / Procedia Computer Science 232 (2024) 890–902� 897
 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000 7

𝝀𝝀𝑻𝑻(𝒊𝒊) + 𝝀𝝀𝑪𝑪 (𝒊𝒊) + 𝝀𝝀𝑼𝑼(𝒊𝒊) = 1;
𝝀𝝀𝑻𝑻(𝒊𝒊) = 0.5, i.e., constant, which takes half of the overall importance always during training;

𝝀𝝀𝑪𝑪(𝒊𝒊) =
𝑖𝑖

2∙(𝑖𝑖+𝑖𝑖∗), i.e., monotonously increasing importance from 0 (at the beginning) to 0.5 (at infinity);

𝝀𝝀𝑼𝑼(𝒊𝒊) =
𝑖𝑖∗

𝟐𝟐∙(𝒊𝒊+𝒊𝒊∗), i.e., monotonously decreasing importance from 0.5 (at the beginning) to 0 (at infinity),
where 𝒊𝒊∗ is the controlling parameter (integer >1, which indicates at which iteration 𝝀𝝀𝑪𝑪 = 𝝀𝝀𝑼𝑼 = 0.25).

See illustrative explanation in Fig. 3.

Fig 3. Plots show a trade-off among the importance of the GENERATOR’s loss function components during training.

Therefore, for D-C-GAN, the loss of the GENERATOR from formula (2) on each generated sample 𝐱⃗⃗𝐱𝒊𝒊 could be

updated as follows:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝔾𝔾(𝐱⃗⃗𝐱𝒊𝒊) = 0.5 ∙ 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝐱⃗⃗𝐱𝒊𝒊) +
𝑖𝑖

2∙(𝑖𝑖+𝑖𝑖∗) ∙ 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝐱⃗⃗𝐱𝒊𝒊) +
𝑖𝑖∗

𝟐𝟐∙(𝒊𝒊+𝒊𝒊∗) ∙ 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝐱⃗⃗𝐱𝒊𝒊). (6)

Training process performance regarding the GENERATOR and, therefore, the CLONE can be controlled just by
one parameter 𝑖𝑖∗ depending on the cloning case specifics.

We consider the “Turing” component to be equally important (50% of the overall importance) during the training
process because it directly influences the performance of the CLONE to simulate the DONOR closely enough.

We assume that the ability of the GENERATOR to generate “diverse” (everywhere within the decision space)
rather than “difficult” (challenging, adversarial) inputs for the DONOR-CLONE couple is more important at the
beginning at the training process, and the trend towards more challenging rather than different inputs will become
influential later in the training process. The trend itself (i.e., how fast the capability to generate challenging inputs will
become as important as the capability to generate diverse inputs) could be controlled by parameter 𝒊𝒊∗.

The reasonability for dynamic weights of different loss components is yet to be checked experimentally. The
intuition is that Cloning-GANs (of the D-C-GAN option) may converge better when some criterion is dominating at
the beginning of the process and another one - at the end. GENERATOR, like a kind of “young journalist”, in the
beginning, learns to ask “different” questions and, when mature with this skill, switches to training his own capability
of asking “difficult” questions also.

The “Three Musketeers” (“All for one and one for all”) Cloning-GAN (3M-C-GAN) architecture differs
significantly from the previous two architectures. It supposes splitting the GENERATOR to three GENERATORs
(“Turing” or 𝔾𝔾𝐓𝐓, “Challenge” or 𝔾𝔾𝐂𝐂, and “Uniformity” or 𝔾𝔾𝐔𝐔), one responsible for each loss component from formula
(2). Before that, we considered only the incremental learning option for the Cloning-GAN architecture, which could
be extended to the “minibatch” learning case when all the loss components are computed as aggregates over few

8 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000

generated samples. In particular, the 3M-C-GAN architecture assumes that, at 𝑖𝑖 -th iteration, each of three
GENERATORs independently generates one sample each and, therefore, resulting in a minibatch of three samples
{𝒙⃗⃗⃗𝒙𝒊𝒊

𝑻𝑻, 𝒙⃗⃗⃗𝒙𝒊𝒊
𝑪𝑪, 𝒙⃗⃗⃗𝒙𝒊𝒊

𝑼𝑼} as shown in Fig. 4. This minibatch goes through the same process as in normal Cloning-GAN described
above so that the component losses are aggregated and distributed among the GENERATORs as follows:

𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐓𝐓({𝒙⃗⃗⃗𝒙𝒊𝒊
𝑻𝑻, 𝒙⃗⃗⃗𝒙𝒊𝒊

𝑪𝑪, 𝒙⃗⃗⃗𝒙𝒊𝒊
𝑼𝑼}) = 1

3 ∙ (𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝒙⃗⃗⃗𝒙𝒊𝒊
𝑻𝑻) + 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝒙⃗⃗⃗𝒙𝒊𝒊

𝑪𝑪) + 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓(𝒙⃗⃗⃗𝒙𝒊𝒊
𝑼𝑼)); (7)

𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐂𝐂({𝒙⃗⃗⃗𝒙𝒊𝒊
𝑻𝑻, 𝒙⃗⃗⃗𝒙𝒊𝒊

𝑪𝑪, 𝒙⃗⃗⃗𝒙𝒊𝒊
𝑼𝑼}) = 1

3 ∙ (𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝒙⃗⃗⃗𝒙𝒊𝒊
𝑻𝑻) + 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝒙⃗⃗⃗𝒙𝒊𝒊

𝑪𝑪) + 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(𝒙⃗⃗⃗𝒙𝒊𝒊
𝑼𝑼)); (8)

𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐔𝐔({𝒙⃗⃗⃗𝒙𝒊𝒊
𝑻𝑻, 𝒙⃗⃗⃗𝒙𝒊𝒊

𝑪𝑪, 𝒙⃗⃗⃗𝒙𝒊𝒊
𝑼𝑼}) = 1

3 ∙ (𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝒙⃗⃗⃗𝒙𝒊𝒊
𝑻𝑻) + 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝒙⃗⃗⃗𝒙𝒊𝒊

𝑪𝑪) + 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(𝒙⃗⃗⃗𝒙𝒊𝒊
𝑼𝑼)). (9)

Fig 4. Architecture of the “Three Musketeers” (“All for one and one for all”) Cloning-GAN (3M-C-GAN).

The main feature of 3M-C-GAN architecture is that each of the GENERATORs, after generating just one sample,

will be punished for the loss created by all the minibatch (i.e., will be responsible for “colleagues’” performance also).
For example, all the loss 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓({𝒙⃗⃗⃗𝒙𝒊𝒊

𝑻𝑻, 𝒙⃗⃗⃗𝒙𝒊𝒊
𝑪𝑪, 𝒙⃗⃗⃗𝒙𝒊𝒊

𝑼𝑼}) computed according to formula (7) will be backpropagated through
the “Turing” GENERATOR 𝔾𝔾𝐓𝐓, although it is actually responsible only for one sample of the three. In this way, the
architecture ensures that all the three GENERATORs are responsible for each one and each one is responsible for all.
Therefore, we used “Three Musketeers” (with the motto “All for one and one for all”) as a name for such an
architecture. One of the advantages of this architecture is that we do not need to worry about the weights 𝝀𝝀𝑻𝑻, 𝝀𝝀𝑪𝑪, 𝝀𝝀𝑼𝑼
from formula (2) because each GENERATOR addresses independently only its own specific loss criteria. We can
also expect better convergence of such a training process managed by multiple GENERATORs compared with one
GENERATOR with complex and conflicting criteria.

If necessary, the missing “D’Artagnan” from the “Three Musketeers” architecture can be enabled as an additional
(fourth) generation quality objective and, therefore, an additional GENERATOR to be responsible for the so-called
“hostility” of generated samples. Such a component could enable not only challenging content for the DONOR, which
is the duty of the “Challenge” component, but rather to ensure that more challenging (“hostile”) areas in data space
will be covered more with the diverse-by-labeling generated samples.

Assume that:
 𝑛𝑛-dimensional sample 𝐱⃗⃗𝐱𝑁𝑁𝑁𝑁: (𝑥̃𝑥1, 𝑥̃𝑥2, … , 𝑥̃𝑥𝑛𝑛), which belongs to previously generated samples (𝐱⃗⃗𝐱1, 𝐱⃗⃗𝐱2,…, 𝐱⃗⃗𝐱𝑖𝑖−1) and

labeled (to 𝑐𝑐 classes) by the DONOR as 𝓕𝓕(𝐱⃗⃗𝐱𝑁𝑁𝑁𝑁): (𝑝𝑝1, 𝑝𝑝2, , … , 𝑝𝑝𝑐𝑐) , is the nearest neighbor (NN) of the newly
generated sample 𝐱⃗⃗𝐱𝒊𝒊: (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) labeled by the DONOR as 𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊): (𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐);

 The “uncertainty gain” of 𝐱⃗⃗𝐱𝒊𝒊 in comparison with its nearest neighbor 𝐱⃗⃗𝐱𝑁𝑁𝑁𝑁 is the following asymmetric measure:

898	 Vagan Terziyan et al. / Procedia Computer Science 232 (2024) 890–902
 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000 9

∆𝝈𝝈(𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵, 𝒙⃗⃗⃗𝒙𝒊𝒊) = 𝝈𝝈(𝓕𝓕(𝐱⃗⃗𝐱𝑵𝑵𝑵𝑵)) − 𝝈𝝈(𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊)) , where: 𝝈𝝈(𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊)) = 𝝈𝝈(𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐) =
1
𝑐𝑐 ∙ √𝑐𝑐 ∙ (𝑝𝑝1

2 + 𝑝𝑝22 +⋯+ 𝑝𝑝𝑐𝑐2) − 1

and 𝝈𝝈(𝓕𝓕(𝐱⃗⃗𝐱𝑵𝑵𝑵𝑵)) = 𝝈𝝈(𝑝𝑝1, 𝑝𝑝2, , … , 𝑝𝑝𝑐𝑐) =
1
𝑐𝑐 ∙ √𝑐𝑐 ∙ (𝑝𝑝1

2 + 𝑝𝑝22 + ⋯+ 𝑝𝑝𝑐𝑐2) − 1;

 The Euclidean distance between 𝐱⃗⃗𝐱𝒊𝒊 and its nearest neighbor 𝐱⃗⃗𝐱𝑁𝑁𝑁𝑁 is 𝒅𝒅(𝒙⃗⃗⃗𝒙𝒊𝒊, 𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵) and it is computed as follows:
𝒅𝒅(𝒙⃗⃗⃗𝒙𝒊𝒊, 𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵) = √∑ (𝑥𝑥𝑘𝑘 − 𝑥̃𝑥𝑘𝑘)𝟐𝟐𝒏𝒏

𝒌𝒌=𝟏𝟏 .

 Hostility of each newly generated sample 𝐱⃗⃗𝐱𝒊𝒊 is a normalized (by sigmoid function) heuristic measure (∈ [0,1]) of
a DONOR-based class-uncertainty-gain gradient in the vicinity of this sample:

𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐢𝐢𝐢𝐢𝐢𝐢(𝐱⃗⃗𝐱𝐢𝐢) = SIG(𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆) = 1
1+𝑒𝑒−𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆, where 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 = ∆𝝈𝝈(𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵,𝒙⃗⃗⃗𝒙𝒊𝒊)

𝒅𝒅(𝒙⃗⃗⃗𝒙𝒊𝒊,𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵)
.

Assuming that maximizing the hostility of generated data is one of the GENERATOR’s objectives, the hostility
component of the GENERATOR’s loss (denoted as 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(𝐱⃗⃗𝐱𝒊𝒊)) could be estimated as being opposite to the
hostility as follows:

𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(𝐱⃗⃗𝐱𝐢𝐢) = 1 − 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(𝐱⃗⃗𝐱𝐢𝐢) =
𝑒𝑒−𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐞𝐞𝐞𝐞𝐞𝐞

1+𝑒𝑒−𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆. (10)

 The “Hostility” component of the GENERATOR’s loss (either as an extra objective for formula (2) or as a
separate “musketeer”-GENERATOR) ensures class-label-diversity of samples, which are close to the corner cases’
areas, helping the CLONE to faster learn the individual biases of the DONOR. See some examples below:
𝑛𝑛 = 2; 𝑐𝑐 = 3; 𝒙⃗⃗⃗𝒙𝒊𝒊: (0,0); 𝓕𝓕(𝒙⃗⃗⃗𝒙𝒊𝒊): (0.4,0.4,0.2); 𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵: (1,1); 𝓕𝓕(𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵): (0.1,0.2,0.7) ⇒ 𝒅̅𝒅(𝓕𝓕(𝒙⃗⃗⃗𝒙𝒊𝒊), 𝓕𝓕(𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵)) = √0.19;
𝒅̅𝒅(𝒙⃗⃗⃗𝒙𝒊𝒊, 𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵) = √2

√2 = 1 ⇒ 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 = √0.19
1 ≈ 0.436 ⇒ 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝒙⃗⃗⃗𝒙𝒊𝒊) =

1
0.436+1 ≈ 0.696.

3. Related Work

Knowledge transfer. Suggested Cloning-GAN architecture is supposed to perform as some kind of knowledge
transfer between DONOR and CLONE. Actually, knowledge transfer is a popular term referring to a wide range of
methods, techniques and applications. In machine learning, it is the process of transferring knowledge learned from
one machine learning model, called “teacher model” (aka DONOR), to another (smaller) model, called “student
model” (aka CLONE), with the goal of improving the performance of the student model. This is often done by
leveraging the pre-existing knowledge of the teacher model to guide and enhance the learning of the student model,
resulting in a more accurate and efficient model. These techniques are widely used in smart manufacturing and
particularly in intelligent fault diagnosis. See, e.g., review in [9]. Some applications require artificial intelligence and
machine learning tasks to be done on edge devices, which have limited resources for running the large and complex
models needed for these tasks. Therefore, knowledge transfer is used as one of possible solutions to compress the
models from a larger network to a smaller one to improve performance while preserving accuracy. Study in [18]
discovers the effectiveness of knowledge transfer for learning on edge devices, depending a lot on architectures and
transfer techniques. Knowledge transfer is not necessarily considering a DONOR to be a black box, but it simply
attempts to design the CLONE as an optimized version of the accessible DONOR. Knowledge transfer involves
feature extraction, transfer learning, and sometimes “knowledge distillation” (a specific type of knowledge transfer,
which needs special attention as it is closer to the objectives of our study).

Knowledge distillation. Knowledge distillation is a specific technique for knowledge transfer that involves training
a smaller model to mimic the behavior and predictions of a larger, more complex model. We may say that knowledge
distillation approaches the problem of creating a functional copy of some classifier in a way that it has the same biases
as the target classifier. To do this, one would need to collect a set of input-output pairs from the target classifier that
represent the confusing cases and biases to be replicated. Then these pairs will be used to train the student model using
knowledge distillation. This is typically done by using the outputs (probabilities of the classes involved) of the teacher
model as so-called “soft targets” to train the student model, rather than using the ground truth labels (“hard targets”
or one-hot encoded vectors). In other words, the student model is trained to predict the same output probabilities for
all the classes involved as the teacher’s model does, rather than the true labels of the winning classes. The idea of
using the outputs of one network to train another one was first proposed in [19] as a method for compressing large
ensembles of classifiers into smaller and faster models with minimal performance loss. Ensembles of hundreds or

10 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000

thousands of classifiers can achieve the best performance in supervised learning, but storing and executing them in
applications with large test sets or limited storage and computational power is not feasible. Therefore, the major need
for knowledge distillation has been and is optimizing resource consumption in classification models, i.e., similar to
the generic knowledge transfer objectives. Our interest is particularly in data-free knowledge distillation, which means
that distillation is made with no access to the data used for training teacher’s model (i.e., DONOR). In data-free
knowledge distillation, the teacher model is trained on a dataset in the same way as traditional supervised learning.
However, instead of using the original training data to distill knowledge into the student model, data-free methods use
other techniques to generate synthetic data that the student model can learn from. This can be useful in situations
where the training data is not available or where there are privacy concerns surrounding the use of sensitive data [20].
The status of such knowledge distillation methods has been provided in a comprehensive survey [10] from the
perspectives of knowledge categories, training schemes, teacher-student architecture, distillation algorithms,
performance comparison and applications. The survey concludes that, in order to improve the performance of
knowledge distillation, it will be useful to integrate it with other learning schemes (adversarial, reinforcement, etc.)
for practical challenges in the future. Generally, the existing distillation methods can be categorized into offline
distillation (see, e.g., [21]), online distillation (see, e.g., [22]), the hybrid of both (see, e.g., [23]), and self-distillation
(see, e.g., [24]). The main difference between online and offline distillation is in the way the teacher and student
models are trained. In offline distillation, the teacher model is pre-trained separately and then used to distill knowledge
into the student model, while in online distillation, both models are trained together and the student model learns from
the teacher model throughout the training process. Self-distillation involves a single model that acts both as the teacher
and as the student, for example, when deeper layers of a neural network model train the shallow layers.

Adversarial distillation. An important and relevant variation of knowledge distillation in our study is known as
adversarial distillation. This is due to the fact that we want to teach the student model (CLONE) to copy not only
correct answers but also the mistakes and biases of the teacher’s model (DONOR). Adversarial distillation supposes
the use of an adversarial network (e.g., GAN) to generate samples (aka soft targets), which are difficult ones for the
student’s model to predict correctly, while still conveying useful information about the underlying distribution of the
data. In traditional distillation, the soft targets are generated by the teacher model itself, while, in adversarial
distillation, these challenging examples are generated by an adversarial network that is specifically trained to do it.
Adversarial distillation typically involves a discriminator network that is used to distinguish between the labeled
samples generated by the adversarial network and the true labels. A good example of adversarial distillation, which
uses GAN architecture, where a student, a teacher, and a discriminator models are trained adversarially, is provided
in [11]. They suggested knowledge distillation GAN (KDGAN) architecture, in which the student and the teacher
learn from each other via distillation losses and are adversarially trained against the discriminator via adversarial
losses. By simultaneously optimizing the distillation and adversarial losses, the student will learn the true data
distribution at the equilibrium. The discrete distribution learned by the student (or the teacher) is approximated with
a concrete distribution, from which continuous samples are generated to obtain low-variance gradient updates to speed
up the training. Data-free adversarial knowledge distillation related to image classification has been performed in [25]
using architecture with an adversarial generator. Such a generator is trained to search for images on which the student
model poorly matches the teacher’s model and, after that, uses these images to train the student model. This process
uses a metric to quantify the degree of teacher vs student belief matching near decision boundaries. In [26], it is also
admitted that the generalization performance of a classifier depends a lot on the adequacy of its decision boundary,
and, therefore, transferring knowledge closer to it is a key to successful knowledge distillation. A dual discriminator
adversarial distillation architecture has been studied in [27]. In such an architecture, the generator creates samples and
uses for that not only the pre-trained intrinsic statistics of the teacher’s model but also obtains the maximum
discrepancy from the student’s model. Therefore, two different discriminators are employed for training the generator.
The first discriminator encourages the generator to produce samples, which could mimic the distribution of the original
training data. The second discriminator is employed to customize samples for the student’s network aiming for better
distillation performance. Generated samples are used to train the compact student network under the supervision of
the teacher. The approach has been successfully evaluated on several public datasets.

In our Cloning-GAN architecture, the work on generating training samples for the CLONE is divided between the
GENERATOR, who finds the coordinates for potentially challenging samples, and the DONOR, who labels it. This
enables reaching adversarial distillation objectives without the use of a specific discriminator network component.
However, the DONOR-CLONE pair in our architecture can be considered as a kind of complex discriminator, which
is an update of “Turing” discriminator used in our former studies (see, e.g., [13]).

	 Vagan Terziyan et al. / Procedia Computer Science 232 (2024) 890–902� 899
 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000 9

∆𝝈𝝈(𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵, 𝒙⃗⃗⃗𝒙𝒊𝒊) = 𝝈𝝈(𝓕𝓕(𝐱⃗⃗𝐱𝑵𝑵𝑵𝑵)) − 𝝈𝝈(𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊)) , where: 𝝈𝝈(𝓕𝓕(𝐱⃗⃗𝐱𝒊𝒊)) = 𝝈𝝈(𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑐𝑐) =
1
𝑐𝑐 ∙ √𝑐𝑐 ∙ (𝑝𝑝1

2 + 𝑝𝑝22 +⋯+ 𝑝𝑝𝑐𝑐2) − 1

and 𝝈𝝈(𝓕𝓕(𝐱⃗⃗𝐱𝑵𝑵𝑵𝑵)) = 𝝈𝝈(𝑝𝑝1, 𝑝𝑝2, , … , 𝑝𝑝𝑐𝑐) =
1
𝑐𝑐 ∙ √𝑐𝑐 ∙ (𝑝𝑝1

2 + 𝑝𝑝22 + ⋯+ 𝑝𝑝𝑐𝑐2) − 1;

 The Euclidean distance between 𝐱⃗⃗𝐱𝒊𝒊 and its nearest neighbor 𝐱⃗⃗𝐱𝑁𝑁𝑁𝑁 is 𝒅𝒅(𝒙⃗⃗⃗𝒙𝒊𝒊, 𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵) and it is computed as follows:
𝒅𝒅(𝒙⃗⃗⃗𝒙𝒊𝒊, 𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵) = √∑ (𝑥𝑥𝑘𝑘 − 𝑥̃𝑥𝑘𝑘)𝟐𝟐𝒏𝒏

𝒌𝒌=𝟏𝟏 .

 Hostility of each newly generated sample 𝐱⃗⃗𝐱𝒊𝒊 is a normalized (by sigmoid function) heuristic measure (∈ [0,1]) of
a DONOR-based class-uncertainty-gain gradient in the vicinity of this sample:

𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐢𝐢𝐢𝐢𝐢𝐢(𝐱⃗⃗𝐱𝐢𝐢) = SIG(𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆) = 1
1+𝑒𝑒−𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆, where 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 = ∆𝝈𝝈(𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵,𝒙⃗⃗⃗𝒙𝒊𝒊)

𝒅𝒅(𝒙⃗⃗⃗𝒙𝒊𝒊,𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵)
.

Assuming that maximizing the hostility of generated data is one of the GENERATOR’s objectives, the hostility
component of the GENERATOR’s loss (denoted as 𝐋𝐋𝐋𝐋𝐋𝐋𝐬𝐬𝔾𝔾𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(𝐱⃗⃗𝐱𝒊𝒊)) could be estimated as being opposite to the
hostility as follows:

𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(𝐱⃗⃗𝐱𝐢𝐢) = 1 − 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇(𝐱⃗⃗𝐱𝐢𝐢) =
𝑒𝑒−𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐞𝐞𝐞𝐞𝐞𝐞

1+𝑒𝑒−𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆. (10)

 The “Hostility” component of the GENERATOR’s loss (either as an extra objective for formula (2) or as a
separate “musketeer”-GENERATOR) ensures class-label-diversity of samples, which are close to the corner cases’
areas, helping the CLONE to faster learn the individual biases of the DONOR. See some examples below:
𝑛𝑛 = 2; 𝑐𝑐 = 3; 𝒙⃗⃗⃗𝒙𝒊𝒊: (0,0); 𝓕𝓕(𝒙⃗⃗⃗𝒙𝒊𝒊): (0.4,0.4,0.2); 𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵: (1,1); 𝓕𝓕(𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵): (0.1,0.2,0.7) ⇒ 𝒅̅𝒅(𝓕𝓕(𝒙⃗⃗⃗𝒙𝒊𝒊), 𝓕𝓕(𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵)) = √0.19;
𝒅̅𝒅(𝒙⃗⃗⃗𝒙𝒊𝒊, 𝒙⃗⃗⃗𝒙𝑵𝑵𝑵𝑵) = √2

√2 = 1 ⇒ 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 = √0.19
1 ≈ 0.436 ⇒ 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝔾𝔾𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝒙⃗⃗⃗𝒙𝒊𝒊) =

1
0.436+1 ≈ 0.696.

3. Related Work

Knowledge transfer. Suggested Cloning-GAN architecture is supposed to perform as some kind of knowledge
transfer between DONOR and CLONE. Actually, knowledge transfer is a popular term referring to a wide range of
methods, techniques and applications. In machine learning, it is the process of transferring knowledge learned from
one machine learning model, called “teacher model” (aka DONOR), to another (smaller) model, called “student
model” (aka CLONE), with the goal of improving the performance of the student model. This is often done by
leveraging the pre-existing knowledge of the teacher model to guide and enhance the learning of the student model,
resulting in a more accurate and efficient model. These techniques are widely used in smart manufacturing and
particularly in intelligent fault diagnosis. See, e.g., review in [9]. Some applications require artificial intelligence and
machine learning tasks to be done on edge devices, which have limited resources for running the large and complex
models needed for these tasks. Therefore, knowledge transfer is used as one of possible solutions to compress the
models from a larger network to a smaller one to improve performance while preserving accuracy. Study in [18]
discovers the effectiveness of knowledge transfer for learning on edge devices, depending a lot on architectures and
transfer techniques. Knowledge transfer is not necessarily considering a DONOR to be a black box, but it simply
attempts to design the CLONE as an optimized version of the accessible DONOR. Knowledge transfer involves
feature extraction, transfer learning, and sometimes “knowledge distillation” (a specific type of knowledge transfer,
which needs special attention as it is closer to the objectives of our study).

Knowledge distillation. Knowledge distillation is a specific technique for knowledge transfer that involves training
a smaller model to mimic the behavior and predictions of a larger, more complex model. We may say that knowledge
distillation approaches the problem of creating a functional copy of some classifier in a way that it has the same biases
as the target classifier. To do this, one would need to collect a set of input-output pairs from the target classifier that
represent the confusing cases and biases to be replicated. Then these pairs will be used to train the student model using
knowledge distillation. This is typically done by using the outputs (probabilities of the classes involved) of the teacher
model as so-called “soft targets” to train the student model, rather than using the ground truth labels (“hard targets”
or one-hot encoded vectors). In other words, the student model is trained to predict the same output probabilities for
all the classes involved as the teacher’s model does, rather than the true labels of the winning classes. The idea of
using the outputs of one network to train another one was first proposed in [19] as a method for compressing large
ensembles of classifiers into smaller and faster models with minimal performance loss. Ensembles of hundreds or

10 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000

thousands of classifiers can achieve the best performance in supervised learning, but storing and executing them in
applications with large test sets or limited storage and computational power is not feasible. Therefore, the major need
for knowledge distillation has been and is optimizing resource consumption in classification models, i.e., similar to
the generic knowledge transfer objectives. Our interest is particularly in data-free knowledge distillation, which means
that distillation is made with no access to the data used for training teacher’s model (i.e., DONOR). In data-free
knowledge distillation, the teacher model is trained on a dataset in the same way as traditional supervised learning.
However, instead of using the original training data to distill knowledge into the student model, data-free methods use
other techniques to generate synthetic data that the student model can learn from. This can be useful in situations
where the training data is not available or where there are privacy concerns surrounding the use of sensitive data [20].
The status of such knowledge distillation methods has been provided in a comprehensive survey [10] from the
perspectives of knowledge categories, training schemes, teacher-student architecture, distillation algorithms,
performance comparison and applications. The survey concludes that, in order to improve the performance of
knowledge distillation, it will be useful to integrate it with other learning schemes (adversarial, reinforcement, etc.)
for practical challenges in the future. Generally, the existing distillation methods can be categorized into offline
distillation (see, e.g., [21]), online distillation (see, e.g., [22]), the hybrid of both (see, e.g., [23]), and self-distillation
(see, e.g., [24]). The main difference between online and offline distillation is in the way the teacher and student
models are trained. In offline distillation, the teacher model is pre-trained separately and then used to distill knowledge
into the student model, while in online distillation, both models are trained together and the student model learns from
the teacher model throughout the training process. Self-distillation involves a single model that acts both as the teacher
and as the student, for example, when deeper layers of a neural network model train the shallow layers.

Adversarial distillation. An important and relevant variation of knowledge distillation in our study is known as
adversarial distillation. This is due to the fact that we want to teach the student model (CLONE) to copy not only
correct answers but also the mistakes and biases of the teacher’s model (DONOR). Adversarial distillation supposes
the use of an adversarial network (e.g., GAN) to generate samples (aka soft targets), which are difficult ones for the
student’s model to predict correctly, while still conveying useful information about the underlying distribution of the
data. In traditional distillation, the soft targets are generated by the teacher model itself, while, in adversarial
distillation, these challenging examples are generated by an adversarial network that is specifically trained to do it.
Adversarial distillation typically involves a discriminator network that is used to distinguish between the labeled
samples generated by the adversarial network and the true labels. A good example of adversarial distillation, which
uses GAN architecture, where a student, a teacher, and a discriminator models are trained adversarially, is provided
in [11]. They suggested knowledge distillation GAN (KDGAN) architecture, in which the student and the teacher
learn from each other via distillation losses and are adversarially trained against the discriminator via adversarial
losses. By simultaneously optimizing the distillation and adversarial losses, the student will learn the true data
distribution at the equilibrium. The discrete distribution learned by the student (or the teacher) is approximated with
a concrete distribution, from which continuous samples are generated to obtain low-variance gradient updates to speed
up the training. Data-free adversarial knowledge distillation related to image classification has been performed in [25]
using architecture with an adversarial generator. Such a generator is trained to search for images on which the student
model poorly matches the teacher’s model and, after that, uses these images to train the student model. This process
uses a metric to quantify the degree of teacher vs student belief matching near decision boundaries. In [26], it is also
admitted that the generalization performance of a classifier depends a lot on the adequacy of its decision boundary,
and, therefore, transferring knowledge closer to it is a key to successful knowledge distillation. A dual discriminator
adversarial distillation architecture has been studied in [27]. In such an architecture, the generator creates samples and
uses for that not only the pre-trained intrinsic statistics of the teacher’s model but also obtains the maximum
discrepancy from the student’s model. Therefore, two different discriminators are employed for training the generator.
The first discriminator encourages the generator to produce samples, which could mimic the distribution of the original
training data. The second discriminator is employed to customize samples for the student’s network aiming for better
distillation performance. Generated samples are used to train the compact student network under the supervision of
the teacher. The approach has been successfully evaluated on several public datasets.

In our Cloning-GAN architecture, the work on generating training samples for the CLONE is divided between the
GENERATOR, who finds the coordinates for potentially challenging samples, and the DONOR, who labels it. This
enables reaching adversarial distillation objectives without the use of a specific discriminator network component.
However, the DONOR-CLONE pair in our architecture can be considered as a kind of complex discriminator, which
is an update of “Turing” discriminator used in our former studies (see, e.g., [13]).

900	 Vagan Terziyan et al. / Procedia Computer Science 232 (2024) 890–902 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000 11

4. Discussion

In this section, we are going to show the evolution of the cloning concept and cloning architectures in our former
studies to make explicit the role and added value of this study.

We started exploration of the digital cognitive cloning concept from the “smart resource” concept, which is a smart
autonomous industrial asset (aka agent-driven digital twin). The concept of smart resources and enabling infrastructure
(so-called “Global Understanding Environment” driven by UBIWARE as a smart middleware) evolved during two
projects, SmartResource (2004-2006) and UBIWARE (2007-2010) and summarized in [28], [29], and [30] (see also:
http://www.cs.jyu.fi/ai/SmartResource_UBIWARE.html). That time, we believed that digital copies of industrial
assets must be proactive (agent-driven) to enable autonomous operation, interoperability and coordination among
complex industrial assets, systems, and processes. Therefore, we developed mainly the dimension of autonomy for
the emerging digital clone (twin) concept.

Later in [12], we summarized previously obtained results and extended them under the umbrella of Pi-Mind (so-
called “patented intelligence”) technology as an enabler of digital cognitive clones of humans. Pi-Mind is supposed
to enable capturing, cloning, and patenting decision models from a particular human. That time, our solution was
based on transparent ontology-driven modelling and Pi-Mind clones are supposed to make decisions based on an
explicit personalized value system and preferences explicitly modelled for each intended individual. One of the key
features of Pi-Mind has been the possibility for human experts to own, license, share, and sell their clones elsewhere.
Therefore, the main objective and contribution of [12] were scenarios and business models where industrial processes
would benefit from such human ubiquity and increased efficiency.

With the development of deep learning technologies, there appears a possibility to extend an explicit design of
clones towards trainable ML modelling. In [13], we reported the first practical experiments on using adversarial
learning to train digital cognitive clones of human decision makers. We suggested a Turing-GAN (T-GAN) extension
to traditional GAN architecture, which is capable of minimizing the difference between the original decision-maker
and its clone due to a Turing-discriminator component. The T-GAN architecture has been extended in [7] to enable
cloning group decision-making in addition to individual clones. That time, T-GAN was a straightforward solution
(quite a naïve loss function), which worked slowly and with relatively modest accuracy. Later, in [14], we discovered
the similarity between digital cloning and cybersecurity (particularly, data poisoning and evasion attacks). In both
cases, we generate adversarial samples using T-GANs. In the case of cloning, we ask DONOR to label adversarial
samples to facilitate learning of the CLONE. In the case of training digital immunity against adversarial attacks, we
used correctly labelled generated adversarial samples as a “vaccine” to improve the robustness of ML models.

In [6], we summarized our previous digital cognitive cloning results in a comprehensive study where complex ML-
driven cloning (based on T-GAN) has been integrated with the autonomous and ontology-driven Pi-Mind cloning and
tested within several application domains.

However, the weaknesses of the heuristic T-GAN implementations required adding more solid analytics to
facilitate the cloning process and improve the quality of the clones due to generating better adversarial samples for
training. Therefore, in this study, we upgraded T-GAN (which had just one major “Turing” quality component for
generated samples) towards Cloning-GAN, which combines several important quality criteria (“Uniformity”,
“Challenge”, “Hostility” in addition to “Turing”). We have also suggested several alternatives for balancing these
conflicting criteria, aiming to improve each particular case of cloning. Therefore, we consider this study as an
important puzzle in the process of finding suitable and strong solutions for digital cloning. The analytics and
architectures presented in this paper still need thorough testing with complex industrial cases and big industrial data,
which will be a subject of our future research.

Within the context of Industry 4.0 and Smart Manufacturing, the Cloning-GAN-driven solutions could have
practical applications in optimizing manufacturing processes and enhancing human-machine collaboration. One
practical application could involve improving the efficiency of quality control in manufacturing. By training
operational clones of experienced quality control experts, one could develop models that quickly identify defects and
deviations in products on the production line. These clones would inherit the expertise and biases of the original
experts, leading to more accurate and consistent identification of quality issues. Another application could focus on
predictive maintenance. Operational clones of maintenance specialists could be trained to predict equipment failures
and recommend maintenance actions. These clones would learn from the insights of skilled maintenance professionals,
incorporating their decision-making processes and biases. As a result, the manufacturing facility could proactively
address maintenance needs, minimizing downtime and optimizing equipment performance. In the context of human-

	 Vagan Terziyan et al. / Procedia Computer Science 232 (2024) 890–902� 901 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000 11

4. Discussion

In this section, we are going to show the evolution of the cloning concept and cloning architectures in our former
studies to make explicit the role and added value of this study.

We started exploration of the digital cognitive cloning concept from the “smart resource” concept, which is a smart
autonomous industrial asset (aka agent-driven digital twin). The concept of smart resources and enabling infrastructure
(so-called “Global Understanding Environment” driven by UBIWARE as a smart middleware) evolved during two
projects, SmartResource (2004-2006) and UBIWARE (2007-2010) and summarized in [28], [29], and [30] (see also:
http://www.cs.jyu.fi/ai/SmartResource_UBIWARE.html). That time, we believed that digital copies of industrial
assets must be proactive (agent-driven) to enable autonomous operation, interoperability and coordination among
complex industrial assets, systems, and processes. Therefore, we developed mainly the dimension of autonomy for
the emerging digital clone (twin) concept.

Later in [12], we summarized previously obtained results and extended them under the umbrella of Pi-Mind (so-
called “patented intelligence”) technology as an enabler of digital cognitive clones of humans. Pi-Mind is supposed
to enable capturing, cloning, and patenting decision models from a particular human. That time, our solution was
based on transparent ontology-driven modelling and Pi-Mind clones are supposed to make decisions based on an
explicit personalized value system and preferences explicitly modelled for each intended individual. One of the key
features of Pi-Mind has been the possibility for human experts to own, license, share, and sell their clones elsewhere.
Therefore, the main objective and contribution of [12] were scenarios and business models where industrial processes
would benefit from such human ubiquity and increased efficiency.

With the development of deep learning technologies, there appears a possibility to extend an explicit design of
clones towards trainable ML modelling. In [13], we reported the first practical experiments on using adversarial
learning to train digital cognitive clones of human decision makers. We suggested a Turing-GAN (T-GAN) extension
to traditional GAN architecture, which is capable of minimizing the difference between the original decision-maker
and its clone due to a Turing-discriminator component. The T-GAN architecture has been extended in [7] to enable
cloning group decision-making in addition to individual clones. That time, T-GAN was a straightforward solution
(quite a naïve loss function), which worked slowly and with relatively modest accuracy. Later, in [14], we discovered
the similarity between digital cloning and cybersecurity (particularly, data poisoning and evasion attacks). In both
cases, we generate adversarial samples using T-GANs. In the case of cloning, we ask DONOR to label adversarial
samples to facilitate learning of the CLONE. In the case of training digital immunity against adversarial attacks, we
used correctly labelled generated adversarial samples as a “vaccine” to improve the robustness of ML models.

In [6], we summarized our previous digital cognitive cloning results in a comprehensive study where complex ML-
driven cloning (based on T-GAN) has been integrated with the autonomous and ontology-driven Pi-Mind cloning and
tested within several application domains.

However, the weaknesses of the heuristic T-GAN implementations required adding more solid analytics to
facilitate the cloning process and improve the quality of the clones due to generating better adversarial samples for
training. Therefore, in this study, we upgraded T-GAN (which had just one major “Turing” quality component for
generated samples) towards Cloning-GAN, which combines several important quality criteria (“Uniformity”,
“Challenge”, “Hostility” in addition to “Turing”). We have also suggested several alternatives for balancing these
conflicting criteria, aiming to improve each particular case of cloning. Therefore, we consider this study as an
important puzzle in the process of finding suitable and strong solutions for digital cloning. The analytics and
architectures presented in this paper still need thorough testing with complex industrial cases and big industrial data,
which will be a subject of our future research.

Within the context of Industry 4.0 and Smart Manufacturing, the Cloning-GAN-driven solutions could have
practical applications in optimizing manufacturing processes and enhancing human-machine collaboration. One
practical application could involve improving the efficiency of quality control in manufacturing. By training
operational clones of experienced quality control experts, one could develop models that quickly identify defects and
deviations in products on the production line. These clones would inherit the expertise and biases of the original
experts, leading to more accurate and consistent identification of quality issues. Another application could focus on
predictive maintenance. Operational clones of maintenance specialists could be trained to predict equipment failures
and recommend maintenance actions. These clones would learn from the insights of skilled maintenance professionals,
incorporating their decision-making processes and biases. As a result, the manufacturing facility could proactively
address maintenance needs, minimizing downtime and optimizing equipment performance. In the context of human-

12 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000

robot collaboration, operational clones of experienced workers could guide robots in performing complex tasks. The
clones could transfer their expertise to the robots, allowing them to replicate human-like decision-making processes
and adapt to unforeseen challenges on the factory floor. This would lead to more flexible and effective collaboration
between humans and machines, contributing to increased productivity and overall process optimization.

5. Conclusions

A highly automated and human-centric future of smart manufacturing requires process modeling, simulation, and
control based on digital replicas of physical objects and smart entities, including humans. In this paper, we adapt and
modify traditional GAN architecture to be used for cognitive cloning of hidden decision-making capability of a human
or another smart model. The suggested Cloning-GAN architecture is based on new objectives and philosophy. In
traditional GAN, the purpose is a perfect GENERATOR, and the DISCRIMINATOR is just a facilitator in training
such a perfect GENERATOR. Traditional GAN converges when the DISCRIMINATOR will not be able anymore
to distinguish between the real samples (from the target distribution) and the generated samples and only “guesses”
(fake or not) like “coin flipping” (i.e., the convergence (or “equilibrium”) point here means that the average loss of
both GENERATOR and DISCRIMINATOR will become close to 0.5). In the case of Cloning-GAN, the target is a
perfect CLONE. The GENERATOR plays a role of a “challenger” and a “facilitator” for the CLONE training
process by creating adversarial and unlabeled training data. The DONOR plays a role of a “supervisor” by providing
labels to the generated data (i.e., both (trainable) GENERATOR + (untrainable) DONOR are collaboratively
contributing to creating the best training data for CLONE). This new type of GAN converges when the CLONE is
able to copy DONOR with minimal (close to 0) loss, whatever challenges GENERATOR is continuing to
invent. The convergence (equilibrium) point here means that the loss of CLONE is almost zero, while the loss
of GENERATOR reaches some value beyond 0.5.

In the cloning case, we do not have a target distribution to capture (like in traditional GAN) because the “reality”
in this case is represented not by some set of data but by some hidden function (i.e., DONOR) to be learned and
copied like in data-free knowledge distillation tasks. Therefore, we just need to trade-off between the diversity and
challenge of the generated data in a way to get as good as possible training data for the CLONE to learn faster.

Yes, Cloning-GAN inherits (from typical GAN) the process of incremental synchronous training of two adversaries
(in our case, GENERATOR vs CLONE). Therefore, the capable data GENERATOR and the desirable CLONE are
co-evolving towards perfectness during training. However, comparably to the traditional GAN, the Cloning-GAN
architecture is biased more towards the cloning rather than the generation objective.

Suggested architecture is a kind of adversarial knowledge distillation enabler facilitated by advanced multicriteria
GENERATOR (B-C-GAN or D-C-GAN architectures) or by multi-GENERATOR (3M-C-GAN architecture).
However, our overall objective is not related to optimizing the effectiveness and efficiency of classification models or
addressing the data privacy issues like in traditional knowledge distillation, but rather getting a functional copy (aka
digital “clone”) of some hidden phenomena or cognitive behavior (like human decision-making), including its
strengths and weaknesses, perfectness and imperfectness, biases and ignorance, etc., without taking care about its
performance. Therefore, we use the term (digital, cognitive) “cloning” instead of “distillation” in our research.

References

[1] Krishnamurthi, R., and Kumar, A. (2020). “Modeling and Simulation for Industry 4.0”. In: A. Nayyar, A. & A. Kumar (Eds.), A Roadmap to
Industry 4.0: Smart Production, Sharp Business and Sustainable Development (pp. 127-141). Springer. https://doi.org/10.1007/978-3-030-
14544-6_7

[2] Stavropoulos, P., and Mourtzis, D. (2022). “Digital twins in industry 4.0”. In: Design and Operation of Production Networks for Mass
Personalization in the Era of Cloud Technology (Chapter 10, pp. 277-316). Elsevier. https://doi.org/10.1016/B978-0-12-823657-4.00010-5

[3] Wang, B., Zheng, P., Yin, Y., Shih, A., and Wang, L. (2022). “Toward human-centric smart manufacturing: A human-cyber-physical systems
(HCPS) perspective”. Journal of Manufacturing Systems, 63: 471-490. https://doi.org/10.1016/j.jmsy.2022.05.005

[4] Longo, F., Padovano, A., De Felice, F., Petrillo, A., and Elbasheer, M. (2023). “From “prepare for the unknown” to “train for what's coming”:
A digital twin-driven and cognitive training approach for the workforce of the future in smart factories”. Journal of Industrial Information
Integration, 32: 100437. https://doi.org/10.1016/j.jii.2023.100437

[5] Gazzaneo, L., Padovano, A., and Umbrello, S. (2020). ”Designing smart operator 4.0 for human values: a value sensitive design
approach”. Procedia Manufacturing, 42: 219-226. https://doi.org/10.1016/j.promfg.2020.02.073

902	 Vagan Terziyan et al. / Procedia Computer Science 232 (2024) 890–902
 Vagan Terziyan et al. / Procedia Computer Science 00 (2023) 000–000 13

[6] Golovianko, M., Gryshko, S., Terziyan, V., and Tuunanen, T. (2022). “Responsible cognitive digital clones as decision makers: A design
science research study”. European Journal of Information Systems. https://doi.org/10.1080/0960085X.2022.2073278

[7] Terziyan, V., Gavriushenko, M., Girka, A., Gontarenko, A., and Kaikova, O. (2021). ”Cloning and training collective intelligence with
generative adversarial networks”. IET Collaborative Intelligent Manufacturing, 3(1): 64-74. https://doi.org/10.1049/cim2.12008

[8] Lee, J., Azamfar, M., Singh, J., and Siahpour, S. (2020). “Integration of digital twin and deep learning in cyber‐physical systems: towards
smart manufacturing”. IET Collaborative Intelligent Manufacturing, 2(1): 34-36. https://doi.org/10.1049/iet-cim.2020.0009

[9] Liu, G., Shen, W., Gao, L., and Kusiak, A. (2022). “Knowledge transfer in fault diagnosis of rotary machines”. IET Collaborative Intelligent
Manufacturing, 4(1): 17-34. https://doi.org/10.1049/cim2.12047

[10] Gou, J., Yu, B., Maybank, S. J., and Tao, D. (2021). “Knowledge distillation: A survey”. International Journal of Computer Vision, 129:
1789-1819. https://doi.org/10.1007/s11263-021-01453-z

[11] Wang, X., Zhang, R., Sun, Y., and Qi, J. (2018). “KDGAN: Knowledge distillation with generative adversarial networks”. Advances in neural
information processing systems, 31. https://proceedings.neurips.cc/paper_files/paper/2018/file/019d385eb67632a7e958e23f24bd07d7-
Paper.pdf

[12] Terziyan, V., Gryshko, S., and Golovianko, M. (2018). “Patented intelligence: Cloning human decision models for Industry 4.0”. Journal of
Manufacturing Systems, 48 (Part C): 204-217. Elsevier. https://doi.org/10.1016/j.jmsy.2018.04.019

[13] Golovianko, M., Gryshko, S., Terziyan, V., and Tuunanen, T. (2021). Towards digital cognitive clones for the decision-makers: Adversarial
training experiments. Procedia Computer Science, 180: 180-189. Elsevier. https://doi.org/10.1016/j.procs.2021.01.155

[14] Branytskyi, V., Golovianko, M., Gryshko, S., Malyk, D., Terziyan, V., and Tuunanen, T. (2022). “Digital clones and digital immunity:
Adversarial training handles both”. International Journal of Simulation and Process Modelling, 18(2): 124-
139. https://doi.org/10.1504/IJSPM.2022.10048910

[15] Aggarwal, A., Mittal, M., and Battineni, G. (2021). “Generative adversarial network: An overview of theory and applications”. International
Journal of Information Management Data Insights, 1(1): 100004. https://doi.org/10.1016/j.jjimei.2020.100004

[16] Endres, D. M., and Schindelin, J. E. (2003). “A new metric for probability distributions”. IEEE Transactions on Information Theory, 49(7):
1858-1860. https://doi.org/10.1109/TIT.2003.813506

[17] Bhattacharyya, P., and Chakrabarti, B. K. (2008). “The mean distance to the nth neighbour in a uniform distribution of random points: An
application of probability theory”. European Journal of Physics, 29(3): 639-645. https://doi.org/10.1088/0143-0807/29/3/023

[18] Sharma, R., Biookaghazadeh, S., and Zhao, M. (2018). “Are existing knowledge transfer techniques effective for deep learning on edge
devices?”. In: Proceedings of the 27th International Symposium on High-Performance Parallel and Distributed Computing (pp. 15-16).
https://doi.org/10.1145/3220192.3220459

[19] Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. (2006). “Model compression”. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (pp. 535-541). https://doi.org/10.1145/1150402.1150464

[20] Zhu, Z., Hong, J., and Zhou, J. (2021). “Data-free knowledge distillation for heterogeneous federated learning”. Proceedings of Machine
Learning Research, 139: 12878-12889. http://proceedings.mlr.press/v139/zhu21b/zhu21b.pdf

[21] Ba, J., and Caruana, R. (2014). “Do deep nets really need to be deep?”. Advances in Neural Information Processing Systems, 27.
https://proceedings.neurips.cc/paper_files/paper/2014/file/ea8fcd92d59581717e06eb187f10666d-Paper.pdf

[22] Chen, D., Mei, J. P., Wang, C., Feng, Y., and Chen, C. (2020). “Online knowledge distillation with diverse peers”. In: Proceedings of the
AAAI Conference on Artificial Intelligence (Vol. 34, No. 4, pp. 3430-3437). https://doi.org/10.1609/aaai.v34i04.5746

[23] Li, L., and Jin, Z. (2022). “Shadow knowledge distillation: Bridging offline and online knowledge transfer”. Advances in Neural Information
Processing Systems, 35: 635-649. https://proceedings.neurips.cc/paper_files/paper/2022/file/040d3b6af368bf71f952c18da5713b48-Paper-
Conference.pdf

[24] Zhang, L., Bao, C., and Ma, K. (2021). “Self-distillation: Towards efficient and compact neural networks”. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(8): 4388-4403. https://doi.org/10.1109/TPAMI.2021.3067100

[25] Micaelli, P., and Storkey, A. J. (2019). “Zero-shot knowledge transfer via adversarial belief matching”. Advances in Neural Information
Processing Systems, 32. https://proceedings.neurips.cc/paper_files/paper/2019/file/fe663a72b27bdc613873fbbb512f6f67-Paper.pdf

[26] Heo, B., Lee, M., Yun, S., and Choi, J. Y. (2019). “Knowledge distillation with adversarial samples supporting decision boundary”.
In: Proceedings of the AAAI Conference (Vol. 33, No. 1, pp. 3771-3778). https://doi.org/10.1609/aaai.v33i01.33013771

[27] Zhao, H., Sun, X., Dong, J., Manic, M., Zhou, H., and Yu, H. (2022). “Dual discriminator adversarial distillation for data-free model
compression”. International Journal of Machine Learning and Cybernetics, 13: 1213–1230. https://doi.org/10.1007/s13042-021-01443-0

[28] Terziyan, V. (2008). “SmartResource–proactive self-maintained resources in semantic web: Lessons learned”. International Journal of Smart
Home, 2(2): 33-57. Global Vision Press. http://dx.doi.org/10.14257/ijsh.2008.2.2.03

[29] Katasonov A., Kaykova O., Khriyenko O., Nikitin S., and Terziyan V. (2008). ”Smart semantic middleware for the internet of things”. In:
Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics (vol. 1, pp. 169-178).
https://doi.org/10.5220/0001489001690178

[30] Terziyan, V., and Katasonov, A. (2009). “Global Understanding Environment: Applying semantic and agent technologies to industrial
automation”. In: Emerging Topics and Technologies in Information Systems (pp. 55-87). IGI Global. https://doi.org/10.4018/978-1-60566-
222-0.ch003

