dc.contributor.author | Artiemjew, Piotr | |
dc.contributor.author | Cybulski, Radosław | |
dc.contributor.author | Emamian, Mohammad | |
dc.contributor.author | Grzybowski, Andrzej | |
dc.contributor.author | Jankowski, Andrzej | |
dc.contributor.author | Lanca, Carla | |
dc.contributor.author | Mehravaran, Shiva | |
dc.contributor.author | Młyński, Marcin | |
dc.contributor.author | Morawski, Cezary | |
dc.contributor.author | Nordhausen, Klaus | |
dc.contributor.author | Pärssinen, Olavi | |
dc.contributor.author | Ropiak, Krzysztof | |
dc.contributor.editor | Rocha, Ana Paula | |
dc.contributor.editor | Steels, Luc | |
dc.contributor.editor | Herik, Jaap van den | |
dc.date.accessioned | 2024-03-14T12:22:14Z | |
dc.date.available | 2024-03-14T12:22:14Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Artiemjew, P., Cybulski, R., Emamian, M., Grzybowski, A., Jankowski, A., Lanca, C., Mehravaran, S., Młyński, M., Morawski, C., Nordhausen, K., Pärssinen, O., & Ropiak, K. (2024). Predicting Children's Myopia Risk : A Monte Carlo Approach to Compare the Performance of Machine Learning Models. In A. P. Rocha, L. Steels, & J. V. D. Herik (Eds.), <i>ICAART 2024 : Proceedings of the 16th International Conference on Agents and Artificial Intelligence, Volume 3</i> (pp. 1092-1099). SCITEPRESS Science and Technology Publications. <a href="https://doi.org/10.5220/0012435500003636" target="_blank">https://doi.org/10.5220/0012435500003636</a> | |
dc.identifier.other | CONVID_207561430 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/93902 | |
dc.description.abstract | This study presents the initial results of the Myopia Risk Calculator (MRC) Consortium, introducing an innovative approach to predict myopia risk by using trustworthy machine-learning models. The dataset included approximately 7,945 records (eyes) from 3,989 children. We developed a myopia risk calculator and an accompanying web interface. Central to our research is the challenge of model trustworthiness, specifically evaluating the effectiveness and robustness of AI (Artificial Intelligence)/ML (Machine Learning)/NLP (Natural Language Processing) models. We adopted a robust methodology combining Monte Carlo simulations with cross-validation techniques to assess model performance. Our experiments revealed that an ensemble of classifiers and regression models with Lasso regression techniques provided the best outcomes for predicting myopia risk. Future research aims to enhance model accuracy by integrating image and synthetic data, including advanced Monte Carlo simulations. | en |
dc.format.extent | 1443 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | SCITEPRESS Science and Technology Publications | |
dc.relation.ispartof | ICAART 2024 : Proceedings of the 16th International Conference on Agents and Artificial Intelligence, Volume 3 | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | myopia prediction | |
dc.subject.other | machine learning | |
dc.subject.other | data analysis | |
dc.subject.other | Monte Carlo simulations | |
dc.subject.other | Lasso regression | |
dc.title | Predicting Children's Myopia Risk : A Monte Carlo Approach to Compare the Performance of Machine Learning Models | |
dc.type | conferenceObject | |
dc.identifier.urn | URN:NBN:fi:jyu-202403142416 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Liikuntatieteellinen tiedekunta | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.laitos | Faculty of Sport and Health Sciences | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-989-758-680-4 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1092-1099 | |
dc.relation.issn | 2184-433X | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 SCITEPRESS | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.conference | International Conference on Agents and Artificial Intelligence | |
dc.subject.yso | Monte Carlo -menetelmät | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | lapset (ikäryhmät) | |
dc.subject.yso | likinäköisyys | |
dc.subject.yso | mallit (mallintaminen) | |
dc.subject.yso | riskitekijät | |
dc.subject.yso | ennusteet | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6361 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4354 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5995 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p510 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13277 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3297 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.5220/0012435500003636 | |
jyx.fundinginformation | Shahroud School Children Eye Cohort Study is funded by the Noor Ophthalmology Research Center and Shahroud University of Medical Sciences. (Grant numbers: 9329, 960351). | |
dc.type.okm | A4 | |