dc.contributor.author | Carlson, Emily | |
dc.contributor.author | Saari, Pasi | |
dc.contributor.author | Burger, Birgitta | |
dc.contributor.author | Toiviainen, Petri | |
dc.date.accessioned | 2024-02-29T08:21:23Z | |
dc.date.available | 2024-02-29T08:21:23Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Carlson, E., Saari, P., Burger, B., & Toiviainen, P. (2020). Dance to your own drum : identification of musical genre and individual dancer from motion capture using machine learning. <i>Journal of New Music Research</i>, <i>49</i>(2), 162-177. <a href="https://doi.org/10.1080/09298215.2020.1711778" target="_blank">https://doi.org/10.1080/09298215.2020.1711778</a> | |
dc.identifier.other | CONVID_34177070 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/93755 | |
dc.description.abstract | Machine learning has been used to accurately classify musical genre using features derived from audio signals. Musical genre, as well as lower-level audio features of music, have also been shown to influence music-induced movement, however, the degree to which such movements are genre-specific has not been explored. The current paper addresses this using motion capture data from participants dancing freely to eight genres. Using a Support Vector Machine model, data were classified by genre and by individual dancer. Against expectations, individual classification was notably more accurate than genre classification. Results are discussed in terms of embodied cognition and culture. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Routledge | |
dc.relation.ispartofseries | Journal of New Music Research | |
dc.rights | CC BY-NC 4.0 | |
dc.subject.other | motion capture | |
dc.subject.other | machine learning | |
dc.subject.other | embodied cognition | |
dc.title | Dance to your own drum : identification of musical genre and individual dancer from motion capture using machine learning | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202402292227 | |
dc.contributor.laitos | Musiikin, taiteen ja kulttuurin tutkimuksen laitos | fi |
dc.contributor.laitos | Department of Music, Art and Culture Studies | en |
dc.contributor.oppiaine | Musiikkitiede | fi |
dc.contributor.oppiaine | Musicology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 162-177 | |
dc.relation.issn | 1744-5027 | |
dc.relation.numberinseries | 2 | |
dc.relation.volume | 49 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2020 Taylor & Francis | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 299067 | |
dc.relation.grantnumber | 272250 | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | liikkeentunnistus | |
dc.subject.yso | tanssi | |
dc.subject.yso | musiikki | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p24599 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1278 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1808 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.relation.doi | 10.1080/09298215.2020.1711778 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Postdoctoral Researcher, AoF | en |
jyx.fundingprogram | Research post as Academy Professor, AoF | en |
jyx.fundingprogram | Tutkijatohtori, SA | fi |
jyx.fundingprogram | Akatemiaprofessorin tehtävä, SA | fi |
jyx.fundinginformation | This work was supported by funding from the Academy of Finland, project numbers 272250, 299067 and 274037. | |
dc.type.okm | A1 | |