Näytä suppeat kuvailutiedot

dc.contributor.authorZolotukhin, Mikhail
dc.contributor.authorKumar, Sanjay
dc.contributor.authorHämäläinen, Timo
dc.contributor.editorDe Turck, Filip
dc.contributor.editorChemouil, Prosper
dc.contributor.editorWauters, Tim
dc.contributor.editorFaten Zhani, Mohamed
dc.contributor.editorCerroni, Walter
dc.contributor.editorPasquini, Rafael
dc.contributor.editorZhu, Zuqing
dc.date.accessioned2024-02-28T12:39:18Z
dc.date.available2024-02-28T12:39:18Z
dc.date.issued2020
dc.identifier.citationZolotukhin, M., Kumar, S., & Hämäläinen, T. (2020). Reinforcement Learning for Attack Mitigation in SDN-enabled Networks. In F. De Turck, P. Chemouil, T. Wauters, M. Faten Zhani, W. Cerroni, R. Pasquini, & Z. Zhu (Eds.), <i>NetSoft 2020 : Proceedings of the 2020 IEEE Conference on Network Softwarization. Bridging the Gap Between AI and Network Softwarization </i> (pp. 282-286). IEEE. <a href="https://doi.org/10.1109/NetSoft48620.2020.9165383" target="_blank">https://doi.org/10.1109/NetSoft48620.2020.9165383</a>
dc.identifier.otherCONVID_41742891
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93737
dc.description.abstractWith the recent progress in the development of low-budget sensors and machine-to-machine communication, the Internet-of-Things has attracted considerable attention. Unfortunately, many of today's smart devices are rushed to market with little consideration for basic security and privacy protection making them easy targets for various attacks. Unfortunately, organizations and network providers use mostly manual workflows to address malware-related incidents and therefore they are able to prevent neither attack damage nor potential attacks in the future. Thus, there is a need for a defense system that would not only detect an intrusion on time, but also would make the most optimal real-time crisis-action decision on how the network security policy should be modified in order to mitigate the threat. In this study, we are aiming to reach this goal relying on advanced technologies that have recently emerged in the area of cloud computing and network virtualization. We are proposing an intelligent defense system implemented as a reinforcement machine learning agent that processes current network state and takes a set of necessary actions in form of software-defined networking flows to redirect certain network traffic to virtual appliances. We also implement a proof-of-concept of the system and evaluate a couple of state-of-art reinforcement learning algorithms for mitigating three basic network attacks against a small realistic network environment.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofNetSoft 2020 : Proceedings of the 2020 IEEE Conference on Network Softwarization. Bridging the Gap Between AI and Network Softwarization
dc.rightsIn Copyright
dc.subject.othernetwork security
dc.subject.othermachine learning
dc.subject.otherreinforcement learning
dc.subject.othersoftware-defined networking
dc.subject.othernetwork function virtualization
dc.titleReinforcement Learning for Attack Mitigation in SDN-enabled Networks
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202402282208
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-7281-5684-2
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange282-286
dc.type.versionacceptedVersion
dc.rights.copyright© IEEE 2020
dc.rights.accesslevelopenAccessfi
dc.relation.conferenceIEEE Conference on Network Softwarization
dc.subject.ysotietoturva
dc.subject.ysoverkkohyökkäykset
dc.subject.ysotietoverkot
dc.subject.ysoturvallisuus
dc.subject.ysokoneoppiminen
dc.subject.ysoanomaliat
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5479
jyx.subject.urihttp://www.yso.fi/onto/yso/p27466
jyx.subject.urihttp://www.yso.fi/onto/yso/p12936
jyx.subject.urihttp://www.yso.fi/onto/yso/p7349
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p37794
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/NetSoft48620.2020.9165383
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright