Reinforcement Learning for Attack Mitigation in SDN-enabled Networks
Zolotukhin, M., Kumar, S., & Hämäläinen, T. (2020). Reinforcement Learning for Attack Mitigation in SDN-enabled Networks. In F. De Turck, P. Chemouil, T. Wauters, M. Faten Zhani, W. Cerroni, R. Pasquini, & Z. Zhu (Eds.), NetSoft 2020 : Proceedings of the 2020 IEEE Conference on Network Softwarization. Bridging the Gap Between
AI and Network Softwarization (pp. 282-286). IEEE. https://doi.org/10.1109/NetSoft48620.2020.9165383
Toimittajat
Päivämäärä
2020Tekijänoikeudet
© IEEE 2020
With the recent progress in the development of low-budget sensors and machine-to-machine communication, the Internet-of-Things has attracted considerable attention. Unfortunately, many of today's smart devices are rushed to market with little consideration for basic security and privacy protection making them easy targets for various attacks. Unfortunately, organizations and network providers use mostly manual workflows to address malware-related incidents and therefore they are able to prevent neither attack damage nor potential attacks in the future. Thus, there is a need for a defense system that would not only detect an intrusion on time, but also would make the most optimal real-time crisis-action decision on how the network security policy should be modified in order to mitigate the threat. In this study, we are aiming to reach this goal relying on advanced technologies that have recently emerged in the area of cloud computing and network virtualization. We are proposing an intelligent defense system implemented as a reinforcement machine learning agent that processes current network state and takes a set of necessary actions in form of software-defined networking flows to redirect certain network traffic to virtual appliances. We also implement a proof-of-concept of the system and evaluate a couple of state-of-art reinforcement learning algorithms for mitigating three basic network attacks against a small realistic network environment.
...
Julkaisija
IEEEEmojulkaisun ISBN
978-1-7281-5684-2Konferenssi
IEEE Conference on Network SoftwarizationKuuluu julkaisuun
NetSoft 2020 : Proceedings of the 2020 IEEE Conference on Network Softwarization. Bridging the Gap Between AI and Network SoftwarizationAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/41742891
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Intelligent Solutions for Attack Mitigation in Zero-Trust Environments
Zolotukhin, Mikhail; Hämäläinen, Timo; Kotilainen, Pyry (Springer, 2022)Many of today’s smart devices are rushed to market with little consideration for basic security and privacy protection, making them easy targets for various attacks. Therefore, IoT will benefit from adapting a zero-trust ... -
Security aspects of service chaining in software-defined networking environments
Räty, Atte (2018)Ohjelmistojohtoinen tietoverkkojen hallinta on uusi lähestymistapa tietoverkkojen hallintaan ja se tuo mukanaan uusia mahdollisuuksia. Eräitä näistä mahdollisuuksista ovat monipuolisemmat ja dynaamisemmat mahdollisuudet ... -
Unsupervised network intrusion detection systems for zero-day fast-spreading network attacks and botnets
Vahdani Amoli, Payam (University of Jyväskylä, 2015)Today, the occurrence of zero-day and complex attacks in high-speed networks is increasingly common due to the high number vulnerabilities in the cyber world. As a result, intrusions become more sophisticated and fast ... -
On Attacking Future 5G Networks with Adversarial Examples : Survey
Zolotukhin, Mikhail; Zhang, Di; Hämäläinen, Timo; Miraghaei, Parsa (MDPI AG, 2023)The introduction of 5G technology along with the exponential growth in connected devices is expected to cause a challenge for the efficient and reliable network resource allocation. Network providers are now required to ... -
Transport layer DDoS attack types and mitigation methods in networks
Zudin, Rodion (2015)Hajautetut palvelunestohyökkäykset ovat olleet kasvava uhka yrityksille jotka käyttävät tietoverkkoihin perustuvia elementtejä tietojärjestelmissään. Viime aikoina eivät pelkästään liikeyritykset, vaan myös poliittiset ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.