Näytä suppeat kuvailutiedot

dc.contributor.authorBjörn, Anders
dc.contributor.authorBjörn, Jana
dc.contributor.authorLehrbäck, Juha
dc.date.accessioned2024-02-28T07:04:39Z
dc.date.available2024-02-28T07:04:39Z
dc.date.issued2023
dc.identifier.citationBjörn, A., Björn, J., & Lehrbäck, J. (2023). Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions. <i>Journal d'Analyse Mathematique</i>, <i>150</i>(1), 159-214. <a href="https://doi.org/10.1007/s11854-023-0273-4" target="_blank">https://doi.org/10.1007/s11854-023-0273-4</a>
dc.identifier.otherCONVID_182288272
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93700
dc.description.abstractIn a complete metric space equipped with a doubling measure supporting a p-Poincaré inequality, we prove sharp growth and integrability results for p-harmonic Green functions and their minimal p-weak upper gradients. We show that these properties are determined by the growth of the underlying measure near the singularity. Corresponding results are obtained also for more general p-harmonic functions with poles, as well as for singular solutions of elliptic differential equations in divergence form on weighted Rn and on manifolds. The proofs are based on a new general capacity estimate for annuli, which implies precise pointwise estimates for p-harmonic Green functions. The capacity estimate is valid under considerably milder assumptions than above. We also use it, under these milder assumptions, to characterize singletons of zero capacity and the p-parabolicity of the space. This generalizes and improves earlier results that have been important especially in the context of Riemannian manifolds.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherHebrew University Magnes Press; Springer
dc.relation.ispartofseriesJournal d'Analyse Mathematique
dc.rightsIn Copyright
dc.titleVolume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202402282172
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineAnalyysin ja dynamiikan tutkimuksen huippuyksikköfi
dc.contributor.oppiaineMathematicsen
dc.contributor.oppiaineAnalysis and Dynamics Research (Centre of Excellence)en
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange159-214
dc.relation.issn0021-7670
dc.relation.numberinseries1
dc.relation.volume150
dc.type.versionacceptedVersion
dc.rights.copyright© Hebrew University Magnes Press; Springer 2023
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysopotentiaaliteoria
dc.subject.ysomittateoria
dc.subject.ysoRiemannin monistot
dc.subject.ysometriset avaruudet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p18911
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
jyx.subject.urihttp://www.yso.fi/onto/yso/p39163
jyx.subject.urihttp://www.yso.fi/onto/yso/p27753
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/s11854-023-0273-4
jyx.fundinginformationA. B. and J. B. were supported by the Swedish Research Council, grants 2016-03424 resp., 621-2014-3974 and 2018-04106.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright