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Abstract. In a complete metric space equipped with a doubling measure supporting a p-
Poincaré inequality, we prove sharp growth and integrability results for p-harmonic Green
functions and their minimal p-weak upper gradients. We show that these properties are
determined by the growth of the underlying measure near the singularity. Corresponding
results are obtained also for more general p-harmonic functions with poles, as well as for
singular solutions of elliptic differential equations in divergence form on weighted Rn and
on manifolds.

The proofs are based on a new general capacity estimate for annuli, which implies

precise pointwise estimates for p-harmonic Green functions. The capacity estimate is

valid under considerably milder assumptions than above. We also use it, under these

milder assumptions, to characterize singletons of zero capacity and the p-parabolicity of

the space. This generalizes and improves earlier results that have been important especially

in the context of Riemannian manifolds.
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1. Introduction

In this paper we study the growth and Lτ -integrability of p-harmonic Green (and
singular) functions in metric measure spaces, as well as Lt-integrability of their
minimal p-weak upper gradients, with 1 < p < ∞. We show that these properties
are determined by the growth of the measure near the singularity. We also obtain
corresponding results for more general p-harmonic functions with poles, as well as
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for singular solutions of elliptic differential equations in divergence form on weighted
Rn and on manifolds.

Recall that u is a p-harmonic Green function in a bounded domain Ω ⊂ Rn

with singularity at x0 ∈ Ω if

∆pu := div(|∇u|p−2∇u) = −δx0
in Ω (1.1)

with zero boundary values on ∂Ω (in Sobolev sense), where δx0
is the Dirac mea-

sure at x0. Such a function u is p-harmonic (i.e. ∆pu = 0) in Ω \ {x0} and p-
superharmonic (i.e. ∆pu ≤ 0) in the whole domain Ω. If 1 < p ≤ n, then also
limx→x0 u(x) =∞.

In a metric measure space X = (X, d, µ) there is (a priori) no equation available
for defining p-harmonic functions, and they are instead defined as local minimizers
of the p-energy integral ∫

gpu dµ,

where gu is the minimal p-weak upper gradient of u. For example, on Rn we have
gu = |∇u| and these definitions of p-harmonic functions and p-harmonic Green
functions are equivalent to the definitions using the p-Laplace operator ∆pu.

Let Ω ⊂ X be a bounded domain and assume that x0 ∈ Ω with p-capacity
Cp({x0}) = 0. Following our earlier paper [11], we say that u is a singular function
in Ω with singularity at x0 if u is p-harmonic in Ω \ {x0} and p-superharmonic in
Ω, u = 0 on ∂Ω in the Sobolev sense and limx→x0

u(x) = ∞. A Green function is
then a precisely scaled singular function. See Definition 6.3 for exact definitions.
Earlier definitions are due to Holopainen [31] for manifolds, Heinonen–Kilpeläinen–
Martio [28, Section 7.38] for weighted Rn and Holopainen–Shanmugalingam [35]
for metric spaces.

Throughout the paper, we fix 1 < p < ∞ and a point x0 ∈ X and write
Br = B(x0, r). For the rest of the introduction, we also assume that X is a com-
plete metric space equipped with a doubling measure µ that supports a p-Poincaré
inequality.

The following result summarizes some of the main results in this paper, many
of which are new also in weighted Rn and on manifolds. Clearly, it contains the
known sharp results for unweighed Rn and 1 < p ≤ n as special cases (with s0 = n).
Let

s0 = inf{s > 0 : there is Cs > 0 so that µ(B(x0, r)) ≥ Csrs for 0 < r ≤ 1},

τp =


s0(p− 1)

s0 − p
, if p < s0,

∞, if p = s0,
and tp =

s0(p− 1)

s0 − 1
. (1.2)

Theorem 1.1. Let Ω ⊂ X be a bounded domain containing x0, and u be a singular
or Green function in Ω with singularity at x0. Assume that Cp({x0}) = 0. Then
the following are true:

(a) p ≤ s0 and u is unbounded ;
(b) u ∈ Lτ (Ω) for all 0 < τ < τp;
(c) u /∈ Lτ (Ω) if τ > τp;
(d) gu ∈ Lt(Ω) for all 0 < t < tp;
(e) if p = s0, then gu ∈ Lt(Ω) if and only if 0 < t < p;
(f) if p < s0, then gu /∈ Lt(Ω) whenever µ supports a t-Poincaré inequality (at x0

and for small radii), t > tp and t ≥ 1.

The case Cp({x0}) > 0 is not of interest here, since in this case every singular
(and Green) function u in Ω with singularity at x0 is bounded and gu ∈ Lp(Ω); see
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Theorem 6.6, which also shows that the Green function (with singularity at x0) is
unbounded if and only if ∫ 1

0

(
ρ

µ(Bρ)

)1/(p−1)

dρ =∞. (1.3)

In the borderline case τ = τp we completely characterize when u ∈ Lτp(Ω) in
terms of integrals similar to the one in (1.3), see Theorem 9.5. We also provide
sharp results on the integrability of the minimal p-weak upper gradient gu in the
borderline case t = tp, see Theorem 10.3. In the locally pointwise Ahlfors Q-regular
case we obtain the following complete characterization. In particular, it applies to
Riemannian manifolds with nonnegative Ricci curvature and to Carnot groups.

Theorem 1.2. Let Ω ⊂ X be a bounded domain containing x0, and u be a singular
or Green function in Ω with singularity at x0. Assume that Q ≥ p and that µ is
Ahlfors Q-regular around x0 for small radii, i.e.

µ(B(x0, r)) ' rQ, if 0 < r ≤ 1.

Then in a neighbourhood of x0,

u(x) '

{
d(x, x0)(p−Q)/(p−1), if p < Q,

− log d(x, x0), if p = Q,
(1.4)

and the following are true:
(a) u ∈ Lτ (Ω) if and only if 0 < τ < τp := Q(p− 1)/(Q− p) (where τQ =∞);
(b) gu ∈ Lt(Ω) for all 0 < t < tp := Q(p− 1)/(Q− 1);
(c) gu /∈ Lt(Ω) if t ≥ max{1, tp} and X supports a t-Poincaré inequality (at x0

and for small radii).

Using the flexibility of our definition of singular functions, with no a priori
superlevel set requirements, Theorem 1.1 implies the following very similar growth
properties for general p-harmonic functions with poles.

Theorem 1.3. Let Ω ⊂ X be an open set containing x0. Assume that u ≥ 0 is a
p-harmonic function in Ω \ {x0} such that limx→x0 u(x) =∞. Then Cp({x0}) = 0
and the statements (a)–(f) in Theorem 1.1 about (non)integrability hold true with
Lτloc(Ω) and Ltloc(Ω) instead of Lτ (Ω) and Lt(Ω).

Moreover, there exists R > 0 such that in a neighbourhood of x0,

u(x) ' inf
BR

u+

∫ R

d(x,x0)

(
ρ

µ(Bρ)

)1/(p−1)

dρ. (1.5)

For Green and singular functions, infBR
u can be replaced by 0.

See also Theorem 13.1 for corresponding integrability properties of singular func-
tions for elliptic differential equations in divergence form on weighted Rn. The
comparison (1.5) can be seen as a Wolff potential estimate (12.8) in terms of the
Dirac measure δx0

, cf. Remark 12.3. This is natural in view of (1.1) even though
there need not be such an equation in the metric setting.

Existence of singular and Green functions in metric spaces was proved in [11,
Theorem 1.3] for bounded open sets Ω with Cp(X \ Ω) > 0. It was also shown
therein that any two Green functions in Ω with the same singularity are comparable
to each other and thus have the same growth behaviour near the singularity; see
Theorem 6.4. More explicitly, for a Green function u in Ω with singularity at x0,
we have by Theorem 7.1 that

u(x) ' capp(Br,Ω)1/(1−p), if 0 < d(x, x0) = r < R, (1.6)
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where R depends only on Ω. In many cases, estimate (1.6) can be expressed in
terms of r and µ(Br) by using the critical exponents and exponent sets for the
volume growth, studied in [10]; see Section 3 and Corollary 7.2.

The pointwise estimates and integrability properties of Green functions and their
minimal p-weak upper gradients in Theorems 1.1–1.3 are based on (1.6) and the
following new general capacity estimate,

capp(Br, BR) '
(∫ R

r

(
ρ

µ(Bρ)

)1/(p−1)

dρ

)1−p

(1.7)

for 0 < 2r ≤ R ≤ 1
4 diamX. We prove (1.7) in Theorem 4.2 only assuming that the

Poincaré inequality and the doubling (and reverse-doubling) condition for µ hold
for balls centred at x0. In Propositions 5.3 and 5.5 we characterize when singletons
have zero capacity and when X is p-parabolic, by letting r → 0 and R→∞ in (1.7),
respectively.

In the weighted linear case on Rn (with p = 2), Fabes–Jerison–Kenig [20,
Lemma 3.1 and Theorem 3.3] obtained (1.6) and (1.7) already in 1982. Integrabil-
ity of the Green functions and their gradients was proved in Chanillo–Wheeden [17,
Theorem 1.3] for linear equations in A2-weighted Rn for exponents smaller than the
global analogues of our τ2 and t2, respectively (i.e. as in Theorem 8.1 below with
p = 2). Such integrability estimates are useful in integral representation formulas
for solutions of partial differential equations.

Nevertheless, as far as we know, even in this case the sharp integrability results
with pointwise exponents as in (1.2) and Theorem 1.1 do not appear in the existing
literature. Neither do the nonintegrability results as in (c) and (f), although they
are well known for unweighted Rn and many linear and nonlinear equations with
explicit pointwise estimates for Green functions; (f) follows from (c) and the Sobolev
inequality, see also (0.8) in Kichenassamy–Véron [38] for ∆pu = 0 and p > 1.

For rather general nonlinear equations in unweighted Rn, pointwise estimates of
the type (1.4) for solutions with isolated singularities (including Green functions)
were obtained by Serrin [54, Theorem 12]. Pointwise estimates for capacitary poten-
tials associated with such equations were obtained by Maz′ya [50, Lemmas 3 and 4]
(and were used therein in the proof of the sufficiency part of the Wiener criterion
for such equations). These estimates were later extended to weighted equations
in Heinonen–Kilpeläinen–Martio [28]. Since the scaled truncations min{u/m, 1},
m > 0, of singular functions are essentially the capacitary potentials of the su-
perlevel sets {u ≥ m}, such potential estimates (and their metric space version
from [15]) lie behind (1.6) and the construction of singular functions in [11].

Our general assumptions on doubling and p-Poincaré inequality are fulfilled
on weighted Rn equipped with a p-admissible weight as in [28], on Riemannian
manifolds with nonnegative Ricci curvature, on Carnot groups, and for vector fields
satisfying the Hörmander condition, as well as in many other situations. Thus,
our results hold for p-harmonic functions and corresponding subelliptic equations
in all these settings, see Haj lasz–Koskela [25, Sections 10–13] for further details.
Moreover, as in [11, Section 11] the assumptions can be relaxed to similar local
assumptions.

The exponents in Theorem 1.1 are often better than in the integrability re-
sults for general p-superharmonic functions and their gradients from Heinonen–
Kilpeläinen–Martio [28, Theorem 7.46] (on weighted Rn) and Kinnunen–Martio [42,
Section 5] (on metric spaces). This happens e.g. if the local dimension s0 at x0 is
smaller than the global dimension of the space, provided by the doubling property
of µ. For example, the 1-admissible weight w(x) = |x|−α on Rn, with 0 < α < n,
has s0 = n− α at x0, while the general integrability for p-superharmonic functions
is dictated by the dimension n (see also Example 3.1). In the globally Ahlfors
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Q-regular case, i.e. when

µ(B(x, r)) ' rQ for all x ∈ X and r > 0,

the integrability conditions in Theorem 1.2 follow from the general integrability
results in Kinnunen–Martio [42], but even in this case the nonintegrability con-
ditions in Theorem 1.2 seem to be new. For corresponding singular solutions in
Carnot–Carathéodory spaces, the nonintegrability in Theorem 1.1 (c) follows from
Capogna–Danielli–Garofalo [16, Corollary 6.1]. See also [16, Theorem 7.1] for point-
wise estimates related to (1.6).

Danielli–Garofalo–Marola [19, Corollary 5.4] obtained positive integrability re-
sults as in Theorem 1.1 (b) and (d) for singular functions defined as in Holopainen–
Shanmugalingam [35], under some additional assumptions on X. However they had
smaller ranges of p, τ and t, see Remark 9.2 and the comments after Theorem 10.1.
On the other hand, as shown by (c), (e) and (f), the ranges in Theorem 1.1 are
optimal up to the borderline cases.

Estimates (1.6) and (1.7) generalize and improve many results obtained earlier
mainly in the setting of Riemannian manifolds and under additional geometric and
curvature assumptions. For example, estimates using chains of balls along geodesics
were obtained in Holopainen–Koskela [34], while in Coulhon–Holopainen–Saloff-
Coste [18, Theorem 3.5], capacity was estimated by means of the p-isometric profile.
See also Holopainen [33, p. 329]. Different but equivalent formulas for Ap-weighted
Rn were given in Heinonen–Kilpeläinen–Martio [28, Theorems 2.18 and 2.19].

Even though we only deal with Green and singular functions on bounded do-
mains, the capacity estimate (1.7) has consequences for the existence of global Green
functions as well. More precisely, a complete noncompact (sub)Riemannian mani-
fold is called p-parabolic if it does not carry a global Green function. The property of
p-parabolicity has applications for quasiconformal mappings and Picard theorems,
and has been extensively studied in e.g. Coulhon–Holopainen–Saloff-Coste [18], Gri-
gor′yan [24] (p = 2) and Holopainen [31] and [33]. In the manifold setting, it is
known that p-parabolicity is implied by the condition∫ ∞

r0

(
ρ

µ(Bρ)

)1/(p−1)

dρ =∞, (1.8)

see e.g. [18, Corollary 3.2], [24, Theorem 7.3] (p = 2), [33, Proposition 1.7] and
Kesel′man–Zorich [37] (p = n). The converse is in general not true (by [33, p. 322]
or Varopoulos [58]), but has been proved in some (sub)Riemannian manifolds. In
particular, p-parabolicity and (1.8) are equivalent in Riemannian manifolds with
nonnegative Ricci curvature or, more generally, satisfying a global doubling condi-
tion and a global Poincaré inequality, see [18, Proposition 3.4], [33, Corollary 4.12]
and [34, Theorem 1.7] for more details.

One of the well-known equivalent characterizations of p-parabolicity of Rieman-
nian manifolds is that all balls have global variational p-capacity zero, see [24, The-
orem 5.1] (p = 2), Holopainen [31, Theorem 3.27] and [33, p. 322]. This property is
used as the definition of p-parabolicity in metric spaces by Holopainen–Koskela [34,
p. 3428] and Holopainen–Shanmugalingam [35, Definition 3.13]. Following the same
definition, we show in Theorem 5.5 that under rather mild assumptions, an un-
bounded metric space is p-parabolic if and only if (1.8) holds. This recovers and
complements the sufficient condition proved in [34, Proposition 2.3] and generalizes
several of the above results. Recall also that an unbounded space is said to be
p-hyperbolic if it is not p-parabolic.

The outline of the paper is as follows. In Section 2 we recall basic definitions and
assumptions related to the analysis on metric spaces and in Section 3 we introduce
the pointwise exponent sets, which govern the volume growth near x0. The capacity
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estimate (1.7) is proved in Section 4, where we also study some of its consequences,
while the applications of (1.7) for the p-parabolicity and capacity of singletons are
discussed in Section 5.

Background material on p-(super)harmonic functions as well as the definitions
of singular and Green functions are given in Section 6. Note that in the rest of
the paper, we suppress the dependence on p and write “superharmonic” instead of
“p-superharmonic”, but keep the term “p-harmonic”. The pointwise behaviour of
Green (and singular) functions near the singularity is studied in Section 7, where
we also show comparability of Green functions (having the same singularity x0) on
comparable open sets with comparable measures.

General integrability properties of superharmonic functions, recalling and ex-
tending the results in Kinnunen–Martio [42], are reviewed in Section 8. Sections 9
and 10 contain our main results concerning the (non)integrability of Green functions
and their minimal p-weak upper gradients, respectively. In particular, Theorems 1.1
and 1.2 are proved at the end of Section 10. Some examples, based on radial weights
on Rn and complementing the general integrability results, are given in Section 11.
In Section 12 we generalize the growth and integrability results to p-harmonic func-
tions having a pole at x0. Theorem 1.3 is proved at the end of Section 12. Finally, in
Section 13 we discuss how the (non)integrability results for Green functions can be
extended to singular functions for elliptic differential equations in divergence form
on weighted Rn and on Riemannian manifolds.

Acknowledgement. A.B. and J.B. were supported by the Swedish Research Coun-
cil, grants 2016-03424 resp. 621-2014-3974 and 2018-04106. Part of this research
was done during several visits of J. L. to Linköping University; he is grateful for
the support and hospitality.

2. Preliminaries

We assume throughout the paper that 1 < p < ∞ and that X = (X, d, µ) is a
metric space equipped with a metric d and a positive complete Borel measure µ
such that 0 < µ(B) < ∞ for all balls B ⊂ X. Under these assumptions, X is
separable. The σ-algebra on which µ is defined is obtained by the completion of
the Borel σ-algebra. To avoid pathological situations we assume that X contains
at least two points. We also write B(x, r) = {y ∈ X : d(x, y) < r}.

Next we are going to introduce the necessary background on Sobolev spaces and
capacities in metric spaces. Proofs of most of the results mentioned here can be
found in the monographs Björn–Björn [5] and Heinonen–Koskela–Shanmugalingam–
Tyson [30].

A curve is a continuous mapping from an interval; it is rectifiable if it has finite
length, in which case it can be parameterized by its arc length ds. A property holds
for p-almost every curve if it fails only for a curve family Γ with zero p-modulus,
i.e. there is ρ ∈ Lploc(X) such that

∫
γ
ρ ds =∞ for every γ ∈ Γ.

A measurable function g : X → [0,∞] is a p-weak upper gradient of u : X →
[−∞,∞] if for p-almost every nonconstant compact rectifiable curve γ : [0, lγ ]→ X,

|u(γ(0))− u(γ(lγ))| ≤
∫
γ

g ds, (2.1)

where we follow the convention that the left-hand side is ∞ whenever at least one
of the terms therein is ±∞. Weak upper gradients were introduced by Koskela–
MacManus [45], see also Heinonen–Koskela [29]. If u has a p-weak upper gradient
in Lploc(X), then it has an a.e. unique minimal p-weak upper gradient gu ∈ Lploc(X)
in the sense that gu ≤ g a.e. for every p-weak upper gradient g ∈ Lploc(X) of u.
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Following Shanmugalingam [55], we define a version of Sobolev spaces on X.
For a measurable function u : X → [−∞,∞], let

‖u‖N1,p(X) =

(∫
X

|u|p dµ+ inf
g

∫
X

gp dµ

)1/p

,

where the infimum is taken over all p-weak upper gradients of u. The Newtonian
space on X is

N1,p(X) = {u : ‖u‖N1,p(X) <∞}.

The space N1,p(X)/∼, where u ∼ v if and only if ‖u − v‖N1,p(X) = 0, is a
Banach space and a lattice. In this paper we assume that functions in N1,p(X)
are defined everywhere, not just up to an equivalence class in the corresponding
function space. This is needed for (2.1) in the definition of p-weak upper gradients
to make sense. For an open set Ω ⊂ X, the Newtonian space N1,p(Ω) is defined by
considering (Ω, d|Ω, µ|Ω) as a metric space in its own right. Moreover, u ∈ N1,p

loc (Ω) if
for every x ∈ Ω there exists rx > 0 such that B(x, rx) ⊂ Ω and u ∈ N1,p(B(x, rx)).
The space Lploc(Ω) is defined similarly. If u, v ∈ N1,p

loc (X), then gu = gv a.e. in
{x ∈ X : u(x) = v(x)}. In particular gmin{u,c} = guχ{u<c} for c ∈ R.

The Sobolev capacity of an arbitrary set E ⊂ X is

Cp(E) = inf
u
‖u‖pN1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E. The
capacity is the correct gauge for distinguishing between two Newtonian functions.
If u ∈ N1,p

loc (X), then u ∼ v if and only if u = v q.e. (quasieverywhere), that is

Cp({x : u(x) 6= v(x)}) = 0. Moreover, if u, v ∈ N1,p
loc (X) and u = v a.e., then

u = v q.e. Both the Sobolev and the following variational capacity are countably
subadditive.

For an open set Ω ⊂ X, let

N1,p
0 (Ω) = {u|Ω : u ∈ N1,p(X) and u = 0 on X \ Ω}.

The variational capacity of E ⊂ Ω with respect to Ω is

capp(E,Ω) = inf
u

∫
Ω

gpu dµ,

where the infimum is taken over all u ∈ N1,p
0 (Ω) such that u ≥ 1 in E. One can

equivalently take the above infimum over all u ∈ N1,p(X) such that u = 1 on E and
u = 0 on X \ Ω; we call such u admissible for the capacity capp(E,Ω). Similarly,

whenever convenient, u ∈ N1,p
0 (Ω) will be regarded as extended by 0 outside Ω.

The measure µ is (globally) doubling if there is a constant C > 0 such that for
all balls B ⊂ X we have

µ(2B) ≤ Cµ(B),

where λB(x, r) = B(x, λr) for λ > 0. If X is complete and µ is doubling, then X is
also proper, i.e. sets which are closed and bounded are compact.

The space X (or the measure µ) supports a (global) p-Poincaré inequality if
there exist constants C > 0 and λ ≥ 1 such that for all balls B = B(x, r) ⊂ X, all
integrable functions u on X, and all p-weak upper gradients g of u,∫

B

|u− uB | dµ ≤ Cr
(∫

λB

gp dµ

)1/p

, (2.2)

where uB :=
∫
B
u dµ :=

∫
B
u dµ/µ(B). If X supports a Poincaré inequality, then

X is connected.
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If X = Rn is equipped with dµ = w dx, then w ≥ 0 is a p-admissible weight
in the sense of Heinonen–Kilpeläinen–Martio [28] if and only if µ is a doubling
measure which supports a p-Poincaré inequality, see Corollary 20.9 in [28] (which is
only in the second edition) and Proposition A.17 in [5]. In this case, N1,p(Rn) and
N1,p(Ω) are the refined Sobolev spaces defined in [28, p. 96], and moreover the above
Sobolev and variational capacities coincide with those in [28]; see Björn–Björn [5,
Theorem 6.7 (ix) and Appendix A.2] and [7, Theorem 5.1]. The situation is similar
on Riemannian manifolds with nonnegative Ricci curvature and on Carnot groups
equipped with their natural measures; see Haj lasz–Koskela [25, Sections 10 and 11]
for further details.

Throughout the paper, we write Y . Z if there is an implicit constant C > 0
such that Y ≤ CZ. We also write Y & Z if Z . Y , and Y ' Z if Y . Z . Y . Unless
otherwise stated, we always allow the implicit comparison constants to depend on
the standard parameters, such as p, the doubling constant and the constants in the
Poincaré inequality.

3. Exponent sets

If X is connected (which in particular holds if it supports a Poincaré inequality)
and µ is doubling, then there are positive constants θ ≤ θ and C such that

1

C

( r
R

)θ
≤ µ(B(x, r))

µ(B(x,R))
≤ C

( r
R

)θ
whenever x ∈ X and 0 < r ≤ R < 2 diamX. It is easy to see that this condition
is equivalent to the corresponding noncentred conditions (3.1) and (3.2) in [5], pro-
vided that µ is doubling. Example 3.1 below shows that θ may need to be close
to 0. On the other hand, if X is connected, then θ ≥ 1, see Proposition 3.2.

The exponent θ plays a crucial role in various results in the nonlinear potential
theory, such as in optimal exponents in Sobolev and (q, p)-Poincaré inequalities,
see Theorem 5.1 in Haj lasz–Koskela [25] or [5, Section 4.4]. It also plays a promi-
nent role in the integrability results for superharmonic functions by Kinnunen–
Martio [42], see Section 8.

There may or may not be optimal values for θ and θ and it will therefore be
useful to introduce the exponent sets

Θ =

{
θ > 0 : there is Cθ > 0 so that

µ(B(x, r))

µ(B(x,R))
≤ Cθ

( r
R

)θ
for all x ∈ X and 0 < r ≤ R < 2 diamX

}
,

Θ =

{
θ > 0 : there is Cθ > 0 so that

µ(B(x, r))

µ(B(x,R))
≥ Cθ

( r
R

)θ
for all x ∈ X and 0 < r ≤ R < 2 diamX

}
.

Also the following pointwise exponent sets at the fixed x0 ∈ X, introduced in
Björn–Björn–Lehrbäck [10], will be crucial in this paper. Recall from the introduc-
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tion that Br = B(x0, r).

Q
0

=

{
q > 0 : there is Cq > 0 so that

µ(Br)

µ(BR)
≤ Cq

( r
R

)q
for 0 < r < R ≤ 1

}
,

S0 = {s > 0 : there is Cs > 0 so that µ(Br) ≤ Csrs for 0 < r ≤ 1},
S0 = {s > 0 : there is Cs > 0 so that µ(Br) ≥ Csrs for 0 < r ≤ 1},

Q0 =

{
q > 0 : there is Cq > 0 so that

µ(Br)

µ(BR)
≥ Cq

( r
R

)q
for 0 < r < R ≤ 1

}
.

The subscript 0 in the above definitions stands for the fact that the inequalities
are required to hold for small radii. All these sets are intervals and the reason for
introducing them as sets is that they may or may not contain their endpoints

θ0 = sup Θ, q
0

= supQ
0
, s0 = supS0, s0 = inf S0, q0 = inf Q0, θ0 = inf Θ,

respectively. Nevertheless, it is always true that

Θ ⊂ Q
0
⊂ S0, Θ ⊂ Q0 ⊂ S0 and θ0 ≤ q0

≤ s0 ≤ s0 ≤ q0 ≤ θ0.

It was shown in [10, Lemmas 2.4 and 2.5] that the ranges 0 < r < R ≤ 1 and
0 < r ≤ 1, in Q

0
, S0, S0 and Q0, can equivalently be replaced by 0 < r < R ≤ R0

and 0 < r ≤ R0 for any fixed R0 > 0 without changing the resulting exponent
sets. The constants Cq and Cs may however change. By Remark 4.10 in [10], the
capacity estimates in that paper hold for the exponent sets defined above, under
appropriate restrictions of the radii. We will use these facts without further ado.

The following example shows that it is possible to have q0 < 1, while as already
mentioned we always have θ0 ≥ 1 provided that X is connected, see Proposition 3.2
below.

Example 3.1. Let X = Rn, n ≥ 2, and 0 < α < n. Then it is well known that
w(x) = |x|−α is a Muckenhoupt A1-weight and is thus 1-admissible, by Theorem 4
in Björn [14]. For x0 = 0, it is easily verified that µ(Br) ' rn−α and thus

Q
0

= S0 = (0, n− α] and S0 = Q0 = [n− α,∞).

In particular, if n − 1 < α < n, then q
0

= s0 = s0 = q0 = n − α < 1. Moreover,

θ0 = n− α and θ0 = n.

For other examples with the exponent sets Q
0
, S0, S0 and Q0 having various

properties, see [10, Section 3], H. Svensson [56] and S. Svensson [57].

Proposition 3.2. If X is connected, then θ0 ≥ 1.

Proof. Let θ ∈ Θ, 0 < R < 1
4 diamX and x ∈ X. Then X \ B(x, 2R) is nonempty.

As X is connected, for each 0 < ρ < 2R there is xρ such that d(x, xρ) = ρ. Let
N ≥ 2 be an integer.

Then the balls Bj := B(xjR/N , R/2N), j = 1, ... , N − 1, are pairwise disjoint
and contained in B(x,R), and hence there is some 1 ≤ k ≤ N − 1 so that

µ(Bk)

µ(B(x,R))
≤ 1

N − 1
.

Thus, as θ ∈ Θ,

1

N − 1
≥ µ(Bk)

µ(B(x,R))
≥ µ(Bk)

µ(B(xkR/N , 2R))
≥ 1

C

(
1

4N

)θ
,

where C is the constant dictated by θ. As N was arbitrary this is possible only if
θ ≥ 1. Thus also θ0 ≥ 1.
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4. General capacity estimates for annuli

Before going on to the core of this paper – the study of p-harmonic Green functions –
we establish precise general estimates for the capacities of annuli. These results will
play an important role for instance in the pointwise estimates for Green functions,
see Theorem 7.1. Unlike in most of this paper, the estimates in this section hold
under rather weak assumptions. We will consider the following pointwise properties.
Some of these conditions were introduced in [10], but here it will be enough to have
them for certain radii. Recall that x0 ∈ X is fixed.

Definition 4.1. We say that µ is doubling at x0 if

µ(B(x0, 2r)) . µ(B(x0, r))

for all radii r > 0. Similarly, µ supports a p-Poincaré inequality at x0 if (2.2)
holds for all balls B = B(x0, r). Moreover, µ is reverse-doubling at x0 if there are
constants ξ, C > 1 such that

µ(B(x0, ξr)) ≥ Cµ(B(x0, r))

for all 0 < r ≤ diamX/2ξ.

We also say that a property, as above, holds at x0 for radii up to R0 if it holds
for all 0 < r ≤ R0. (Here we allow for R0 =∞, while r is always finite, i.e. r < R0

if R0 =∞.) Finally, a property holds for small (resp. large) radii, if there is some
0 < R0 < ∞ such that the property holds at x0 for all 0 < r ≤ R0 (resp. all
R0 ≤ r <∞).

Note that if X is bounded and µ is reverse-doubling at x0 for radii up to R0,
then necessarily R0 ≤ diamX. (Letting X = B(0, 2) ⊂ Rn, equipped with the
metric d(x, y) = min{|x−y|, 1} and the Lebesgue measure, shows that it is possible
to satisfy the reverse-doubling condition with R0 = diamX.) It is easy to see
by iteration that if µ is doubling at x0 for small radii, then q0 < ∞, and if µ is
reverse-doubling at x0 for small radii, then q

0
> 0.

If X is connected (which in particular holds if µ supports a global Poincaré
inequality) and µ is globally doubling, then µ is reverse-doubling at every x with
constants C > 1 and ξ = 2 independent of x, see Lemma 3.7 in [5] (θ therein corre-
sponds to ξ here). On the other hand, a reverse-doubling measure is not necessarily
doubling, and if µ is doubling at some x0, then µ is not necessarily reverse-doubling
at x0 (even if X is connected and satisfies the 1-Poincaré inequality). This is illus-
trated by X = [0,∞), equipped with the weights min{1, e1/x/x2} and min{1, 1/x},
respectively, see [9, Example 6.2] and Example 7.4 in the preprint version of [9] in
arXiv:1512.06577.

It is straightforward to show that if µ is doubling or reverse-doubling for large
radii at one point x0, then the same property holds at any other point, although
the constants and radial bounds may change from point to point. Similarly, if µ
supports a p-Poincaré inequality at x0 for large radii, and µ is doubling at x0 for
large radii, then µ supports a p-Poincaré inequality at any point for large radii.

Our main result in this section is the following estimate.

Theorem 4.2. Let 0 < R0 ≤ ∞. Assume that
(i) µ is reverse-doubling at x0 for radii up to R0, with constant ξ,

(ii) µ is doubling at x0 for radii up to max
{

1, 1
2ξ
}
R0, and

(iii) µ supports a p0-Poincaré inequality at x0 for radii up to max{2, ξ}R0 for some
1 ≤ p0 < p.
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Then for all 0 < 2r ≤ R ≤ R0,

capp(Br, BR) '
(∫ R

r

(
ρ

µ(Bρ)

)1/(p−1)

dρ

)1−p

, (4.1)

where the implicit comparison constants depend on p, p0 and the doubling, reverse-
doubling and Poincaré constants from (i)–(iii), but not on R0.

As above, when R0 =∞, we still require R to be finite.

Remark 4.3. The proofs in this section reveal that the assumptions in Theo-
rem 4.2, Lemmas 4.7 and 4.8 and Corollary 4.10 about the (reverse) doubling and
the Poincaré inequality can be further restricted to radii ≥ r.

Theorem 4.2 gives an estimate of capp(Br, BR) for a large class of measures. This
generalizes many of the estimates in [10], which in turn were generalizations and
improvements of earlier results in Adamowicz–Shanmugalingam [1] and Garofalo–
Marola [21]. On the other hand, the assumption of p0-Poincaré inequality at x0 for
some 1 ≤ p0 < p is stronger than in [10, Section 6].

If X is complete and µ is globally doubling and supports a global p-Poincaré
inequality, then by Keith–Zhong [36, Theorem 1.0.1] there is 1 ≤ p0 < p such that X
supports a global p0-Poincaré inequality. Under these assumptions µ is also reverse-
doubling with uniform constants C > 1 and ξ = 2, and hence the capacity estimate
in Theorem 4.2 holds with uniform constants for all x0 ∈ X with R0 = 1

4 diamX.
Theorem 4.2 can be used, for instance, to characterize when singletons have zero

capacity and when X is p-parabolic, see Propositions 5.3 and 5.5. Some one-sided
estimates for capacities in terms of the volume growth, as in (4.1), were given in
Coulhon–Holopainen–Saloff-Coste [18, pp. 1151 and 1162], Holopainen [33, p. 329]
and Holopainen–Koskela [34] mainly in the setting of Riemannian manifolds.

Other useful applications of Theorem 4.2 are the pointwise estimates for Green
and singular functions in Section 7, as well as the (non)integrability results for these
functions and their minimal p-weak upper gradients in Sections 9 and 10.

Example 4.4. If w(x) = w(|x|) is a radial weight on Rn, n ≥ 2, such that the mea-
sure dµ = w dx supports a p-Poincaré inequality at x0 = 0, then Proposition 10.8
in [10] shows that for all 0 < r < R,

capp,µ(Br, BR) =

(∫ R

r

f ′(ρ)1/(1−p) dρ

)1−p

,

where f(ρ) = µ(Bρ). Thus, (4.1) can be seen as a generalization of this formula for
annuli that are not too thin. Note that f ′(ρ) ' f(ρ)/ρ in many cases.

The following example shows that the assumption (iii) of a Poincaré inequality
cannot be dropped from Theorem 4.2.

Example 4.5. Let X = B(0, 1) ∪ {(x1, x2) : x1 ≥ 2} ⊂ R2 equipped with the
Lebesgue measure µ. Then X is complete and µ is globally doubling and globally
reverse-doubling. However, if x0 = 0, 0 < r < 2 and R > 1, then capp(Br, BR) = 0.

A similar connected example is the bow-tie

X = {(x1, x2) : |x2| ≤ |x1| and x1 ≥ −1} ⊂ R2

equipped with the Lebesgue measure µ. Again X is complete and µ is globally
doubling and globally reverse-doubling. However, if x0 = (−1, 0), 0 < r ≤ 1 < R
and 1 < p ≤ 2, then capp(Br, BR) = 0.
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Lemma 2.6 in Heinonen–Kilpeläinen–Martio [28] (or Lemma 2.1 in Holopainen–
Koskela [34]) implies that for R = 2k0r,

capp(Br, BR) ≤
( k0∑
k=1

capp(B
k−1, Bk)1/(1−p)

)1−p

, (4.2)

where Bk = 2kBr, k = 0, 1, ... , k0. In fact, in [28] and [34], (4.2) is formulated
for more general condensers, but we are only interested in dyadic sequences of
concentric balls. The proof therein only uses suitable convex combinations of test
functions and does not require any assumptions about the measure µ.

Reformulating (4.2) as follows gives us the upper bound of Theorem 4.2. The
first inequality, with no doubling assumption, will be useful when deducing Lemma 5.2,
while the second inequality is convenient when µ is doubling.

Proposition 4.6. For all 0 < r ≤ 1
2R,

capp(Br, BR) .

(∫ R

2r

(
ρ

µ(Bρ)

)1/(p−1)

dρ

)1−p

(4.3)

and

capp(Br, BR) .
µ(B2r)

µ(Br)

(∫ R

r

(
ρ

µ(Bρ)

)1/(p−1)

dρ

)1−p

. (4.4)

Proof. Write rk = 2kr and Bk = Brk , k = 0, 1, ... , and find an integer k0 such that
rk0 ≤ R < rk0+1. Proposition 5.1 in [10] shows that capp(B

k−1, Bk) . µ(Bk)/rpk.
(Note that the proof of this part of Proposition 5.1 in [10] does not use any doubling
property.) Inserting this estimate into (4.2) yields

capp(Br, BR) ≤ capp(B
0, Bk0) (4.5)

.

( k0∑
k=1

(
rpk

µ(Bk)

)1/(p−1))1−p

.

(∫ R

2r

(
ρ

µ(Bρ)

)1/(p−1)

dρ

)1−p

.

Finally,∫ 2r

r

(
ρ

µ(Bρ)

)1/(p−1)

dρ ≤
(

2r

µ(Br)

)1/(p−1)

r =
1

2

(
µ(B2r)

µ(Br)

rp1
µ(B1)

)1/(p−1)

,

which together with the last inequality in (4.5) gives (4.4).

For the proof of the lower bound in Theorem 4.2, we recall the following version
of the well-known “telescoping argument”.

Lemma 4.7. ([10, Lemma 4.9]) Let R0 ∈ (0,∞]. Assume that 1 ≤ p0 < ∞ and
that

(i) µ is reverse-doubling at x0 for radii up to R0, with constant ξ,
(ii) µ is doubling at x0 for radii up to max

{
1, 1

2ξ
}
R0, and

(iii) µ supports a p0-Poincaré inequality at x0 for radii up to max{2, ξ}R0.
For 0 < 2r ≤ R0, write rk = 2kr and Bk = Brk , k = 0, 1, ... , and let k0 ≥ 1 be such
that rk0 ≤ R0. Then we have for every u ∈ N1,p0

0 (Bk0) that

|uBr | .
k0∑
k=1

rk

(∫
λBk

gp0u dµ

)1/p0

,

where λ is the dilation constant in the p0-Poincaré inequality at x0.
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The assumptions in Lemma 4.7 are slightly weaker than in [10, Lemma 4.9].
However, a careful check of the proof therein shows that only assumptions (i)–(iii)
are needed. In particular, (i) and (ii) are enough to guarantee the comparability of
the measures in the second displayed formula in the proof in [10], while the Poincaré
inequality is only used for the radii assumed in (iii).

To make use of the above lemma we shall exploit the following general estimate
that may be of independent interest since the assumption is very mild and the
first factor on the right-hand side of (4.6) is strongly related to the right-hand side
of (4.2), cf. the proof of Proposition 4.6.

Lemma 4.8. Let 0 < R0 ≤ R′0 ≤ ∞ and assume that µ is reverse-doubling at x0

for radii up to R0. For 0 < 2r ≤ R′0, write rk = 2kr and Bk = Brk , k = 0, 1, ...
and let k0 ≥ 1 be such that rk0 ≤ R′0. Also let 1 ≤ p0 < p. Then we have for every
g ∈ Lp(Bk0),

k0∑
k=1

rk

(∫
Bk

gp0 dµ

)1/p0

.

( k0∑
k=1

(
rpk

µ(Bk)

)1/(p−1))1−1/p(∫
Bk0

gp dµ

)1/p

, (4.6)

where the implicit comparison constant depends on p, p0, the reverse-doubling con-
stants and R′0/R0.

Before proving Lemma 4.8 we show how it leads to the lower bound in Theo-
rem 4.2.

Proof of Theorem 4.2. The upper bound follows from Proposition 4.6.
Conversely, let 0 ≤ u ∈ N1,p(X) be admissible for capp(Br, BR). Write rk = 2kr

and Bk = Brk , k = 0, 1, ... , and find an integer k0 such that rk0−1 < R ≤ rk0 . The
telescoping Lemma 4.7, followed by Lemma 4.8 applied to the balls λBk in place of
Bk and R′0 = λR0, gives

1 .
k0∑
k=1

rk

(∫
λBk

gp0u dµ

)1/p0

.

( k0∑
k=1

(
rpk

µ(Bk)

)1/(p−1))1−1/p(∫
BR

gpu dµ

)1/p

.

Taking infimum over all u admissible for capp(Br, BR) and replacing the sum on the
right-hand side by the corresponding integral yields the lower bound in (4.1).

Remark 4.9. Under the assumptions in Theorem 4.2, by Propositions 5.1 and 6.2
in [10] we have

capp(B
k−1, Bk) ' µ(Bk)

rpk

and hence the proof of Theorem 4.2 shows that the lower bound in (4.1) can also
be written as

capp(Br, BR) &

( k0∑
k=1

capp(B
k−1, Bk)1/(1−p)

)1−p

,

where R = 2k0r. Thus, (4.2) is essentially sharp.

Proof of Lemma 4.8. Write the left-hand side S in (4.6) as

S =

k0∑
k=1

rk
µ(Bk)1/p0

(∫
Bk

gp0 dµ

)1/p0

. (4.7)
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We split the integral over Bk into integrals over A0 := B0 and the annuli Aj =
Bj \Bj−1, j = 1, 2, ... , k, apply Hölder’s inequality (with p/p0 and p1 := p/(p−p0))
to each of these integrals, and obtain∫

Bk

gp0 dµ ≤
k∑
j=0

(∫
Aj

gp dµ

)p0/p
µ(Aj)

1/p1 . (4.8)

The reverse-doubling property at x0 implies that for some β > 0, we can estimate
µ(Aj)

1/p1 as

µ(Aj)
1/p1 ≤ µ(Bj)1/p1 . µ(Bk)1/p1

( rj
rk

)2β

,

where the comparison constant depends on R′0/R0. Since 1/p1 = 1−p0/p, inserting
this first into (4.8) and then into (4.7) gives

S .
k0∑
k=1

rk
µ(Bk)1/p0

µ(Bk)1/p0−1/p

r
2β/p0
k

( k∑
j=0

r2β
j

(∫
Aj

gp dµ

)p0/p)1/p0

. (4.9)

The last sum in (4.9) is now estimated using Hölder’s inequality for sums (with
p1 = p/(p− p0) and p/p0 again) as follows

k∑
j=0

rβj r
β
j

(∫
Aj

gp dµ

)p0/p
≤
( k∑
j=0

rβp1j

)1/p1( k∑
j=0

r
βp/p0
j

∫
Aj

gp dµ

)p0/p

' rβk

( k∑
j=0

r
βp/p0
j

∫
Aj

gp dµ

)p0/p
.

Inserting this into (4.9) yields

S .
k0∑
k=1

(
rpk

µ(Bk)

)1/p

r
−β/p0
k

( k∑
j=0

r
βp/p0
j

∫
Aj

gp dµ

)1/p

.

Another use of Hölder’s inequality for sums (with p/(p− 1) and p) implies

S .

( k0∑
k=1

(
rpk

µ(Bk)

)1/(p−1))1−1/p( k0∑
k=1

r
−βp/p0
k

k∑
j=0

r
βp/p0
j

∫
Aj

gp dµ

)1/p

.

The last factor is estimated by changing the order of summation as( k0∑
j=0

r
βp/p0
j

∫
Aj

gp dµ

k0∑
k=max{1,j}

r
−βp/p0
k

)1/p

'
( k0∑
j=0

∫
Aj

gp dµ

)1/p

,

since the geometric sum is comparable to r
−βp/p0
j . We can thus conclude that

S .

( k0∑
k=1

(
rpk

µ(Bk)

)1/(p−1))1−1/p( k0∑
j=0

∫
Aj

gp dµ

)1/p

,

and the claim follows.

As a consequence of Theorem 4.2 we obtain the following estimates for different
capacities, which will be important when deducing Theorem 10.3.

Corollary 4.10. Let 1 < q < t < p, α = (p− t)/(p− q) and R0 ∈ (0,∞]. Assume
that
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(i) µ is reverse-doubling at x0 for radii up to R0, with constant ξ,
(ii) µ is doubling at x0 for radii up to max

{
1, 1

2ξ
}
R0, and

(iii) µ supports a t0-Poincaré inequality at x0 for radii up to max{2, ξ}R0 for some
1 ≤ t0 < t.

Let 0 < 2r ≤ R ≤ R0. Then the following are true, with the implicit comparison
constants depending on p, q, t, the (reverse) doubling and Poincaré constants from
(i)–(iii), and in (b) and (c) also on R0.

(a) In general,

capt(Br, BR) & capp(Br, BR)1−α
(∫ R

r

(
ρ

µ(Bρ)

)1/(q−1)

dρ

)α(1−q)

& capp(Br, BR)1−α capq(Br, BR)α.

(b) If q < q
0

and R0 <∞, then

capt(Br, BR) & capp(Br, BR)1−α
(
µ(Br)

rq

)α
.

(c) If q = q
0
∈ Q

0
and R0 <∞, then

capt(Br, BR) & capp(Br, BR)1−α
(
µ(Br)

rq

)α(
log

R

r

)α(1−q)

.

Note that since p > t, (4.1) holds for capp, which can therefore be replaced in
Corollary 4.10 by a corresponding integral. Also observe that (b) and (c) do not
follow from (a) together with the estimates in [10] since we here assume a weaker
Poincaré inequality.

Proof. (a) Let β = 1− α = (t− q)/(p− q) and note that

α(q − 1)

t− 1
+
β(p− 1)

t− 1
= 1 and αq + βp = t.

Hölder’s inequality then implies that∫ R

r

(
ρ

µ(Bρ)

)1/(t−1)

dρ =

∫ R

r

(
ρ

µ(Bρ)

)α/(t−1)+β/(t−1)

dρ

≤
(∫ R

r

(
ρ

µ(Bρ)

)1/(q−1)

dρ

)α(q−1)/(t−1)

×
(∫ R

r

(
ρ

µ(Bρ)

)1/(p−1)

dρ

)β(p−1)/(t−1)

.

Raising both sides to the power 1− t and applying Theorem 4.2 to capt, and (4.4)
to capp and capq, now yields (a).

(b) Let q < q′ < q
0

and γ = (q′ − 1)/(q − 1) > 1. Then

ρq
′

µ(Bρ)
.

rq
′

µ(Br)
for r < ρ ≤ R0,

and so∫ R

r

(
ρ

µ(Bρ)

)1/(q−1)

dρ =

∫ R

r

(
ρq
′

µ(Bρ)

)1/(q−1)
dρ

ργ

.
∫ R

r

(
rq
′

µ(Br)

)1/(q−1)
dρ

ργ
.

(
rq
′

µ(Br)

)1/(q−1)

r1−γ .
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Hence, (∫ R

r

(
ρ

µ(Bρ)

)1/(q−1)

dρ

)1−q

&
µ(Br)

rq′
r(γ−1)(q−1) =

µ(Br)

rq
,

and inserting this into (a) gives (b).
(c) Proceeding as in (b), with q′ = q, we see that∫ R

r

(
ρ

µ(Bρ)

)1/(q−1)

dρ .

(
rq

µ(Br)

)1/(q−1) ∫ R

r

dρ

ρ
=

(
rq

µ(Br)

)1/(q−1)

log
R

r
.

Inserting this into (a) gives (c).

The dependence of the implicit constants in (b) and (c) on R0 is through the
constant Cq appearing in the definition of Q

0
for 0 < r < R ≤ R0. It therefore also

depends on the particular choice of q′ > q in the proof of (b). If R0 = ∞, then
diamX = ∞ and (b) and (c) hold for q < q := supQ and q = q ∈ Q, respectively,
where

Q =

{
q > 0 :

µ(Br)

µ(BR)
.
( r
R

)q
for all 0 < r < R <∞

}
.

Remark 4.11. Choosing q < min{t, q
0
} and p > max{t, q0} in Corollary 4.10 (b),

together with Proposition 6.1 (b) in [10] and a direct calculation, yields for 0 < 2r <
R ≤ diamX/2ξ that

capt(Br, BR) &

(
µ(Br)

rt

)(p−t)/(p−q)(
µ(BR)

Rt

)(t−q)/(p−q)( r
R

)(p−t)(t−q)/(p−q)
.

(4.10)
Since

µ(Br)

rt
& capt(Br, BR) and

µ(BR)

Rt
& capt(Br, BR),

this implies and improves the estimates in [10, Proposition 6.2], which use only one
of the balls Br and BR. The borderline cases q = q

0
∈ Q

0
and p = q0 ∈ Q0 which

are allowed in [10, Proposition 6.2], are however not included in (4.10), and the
Poincaré assumption is slightly stronger here.

Note that the product of the estimates in (a) and (b) of [10, Proposition 6.2] gives
an estimate similar to (4.10), but with twice as large exponent at r/R. Moreover,
[10, Proposition 5.1] implies that

capt(Br, BR) .

(
µ(Br)

rt

)(p−t)/(p−q)(
µ(BR)

Rt

)(t−q)/(p−q)

.

If q = q
0
∈ Q

0
and p = q0 ∈ Q0, one can combine Corollary 4.10 with [10,

Proposition 7.1] to obtain more explicit lower bounds for capt, also containing
log(R/r).

5. Capacity of singletons and p-parabolicity

By letting r → 0 or R → ∞ in Theorem 4.2, we will in this section characterize
points of zero capacity and p-parabolic metric spaces in terms of integrals of the
type (4.1). This gives more precise descriptions than some earlier conditions based
on dimensions and exponent sets, as in the following result from [10].

Proposition 5.1. (Proposition 8.2 in [10])
(a) If p < s0 or p = s0 /∈ S0 \ S0, then Cp({x0}) = 0.
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(b) If p > s0, µ is doubling and reverse-doubling at x0 and supports a p-Poincaré
inequality at x0, all three properties holding for small radii, and x0 has a
locally compact neighbourhood, then Cp({x0}) > 0.

A careful check of the proofs in [10] shows that no doubling assumption is needed
for Proposition 5.1 (a). Already Holopainen–Shanmugalingam [35], in the comment
following the proof of Lemma 3.6 therein, pointed out that if p ∈ S0 and X is
locally compact, then capp({x0},Ω) = 0 whenever Ω 3 x0 is open, from which it
easily follows that Cp({x0}) = 0 (cf. (5.3) below).

If p = s0 ∈ S0 \ S0, then the exponent sets are not fine enough to capture when
x0 has zero capacity, see Example 9.4 in [10]. The following results, which are based
on the general capacity estimates from Section 4, are therefore of interest.

Lemma 5.2. Let Ω ⊂ X be a bounded open set with x0 ∈ Ω. If∫ δ

0

(
ρ

µ(Bρ)

)1/(p−1)

dρ =∞ for some δ > 0, (5.1)

or equivalently

∞∑
k=k0

(
2−kp

µ(B2−k)

)1/(p−1)

=∞ for some integer k0 ≥ 0, (5.2)

then capp({x0},Ω) = Cp({x0}) = 0.

Note that the conditions in (5.1) and (5.2) can be equivalently required for all
δ > 0 and all integers k0 ≥ 0, respectively.

Proof. We may assume that B(x0, δ) ⊂ Ω. Hence it follows from (4.3) and (5.1)
that

capp({x0},Ω) ≤ lim
r→0

capp(Br, Bδ) . lim
r→0

(∫ δ

2r

(
ρ

µ(Bρ)

)1/(p−1)

dρ

)1−p

= 0.

For the second part, we have µ({x0}) = 0 since the integral in (5.1) diverges, and
thus

Cp({x0}) ≤ lim
δ→0

(
µ(B(x0, δ)) + capp({x0}, B(x0, δ))

)
= lim
δ→0

µ(B(x0, δ)) = 0, (5.3)

by the regularity of the Borel regular measure µ.

To obtain also the converse direction, we need stronger (pointwise) assumptions
as follows.

Proposition 5.3. Assume that
(i) µ is reverse-doubling at x0 for small radii,

(ii) µ is doubling at x0 for small radii, and

(iii) µ supports a p0-Poincaré inequality at x0 for small radii and some 1 ≤ p0 < p.

Let Ω ⊂ X be a bounded open set with x0 ∈ Ω, and assume that x0 has a locally
compact neighbourhood.

(a) Then Cp({x0}) = 0 if and only if (5.1) holds.

(b) If µ supports a p-Poincaré inequality at x0, then capp({x0},Ω) = 0 if and
only if either (5.1) holds or Cp(X \ Ω) = 0.
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Instead of (5.1) one can equivalently require that (5.2) holds. For n ≥ 2, consider
the following union of concentric layers

X = {x ∈ Rn : |x| /∈ E}, where E =

∞⋃
j=1

(2−2j , 21−2j) ⊂ R,

equipped with the Lebesgue measure. In this case Cp({0}) = 0 for all 1 < p < ∞,
but (5.1) fails if p > n and x0 = 0. Thus the assumption (iii) cannot be dropped,
even if µ is assumed to be globally doubling and globally reverse-doubling. That the
extra Poincaré assumption in (b) cannot be dropped is easily seen by considering
e.g. X = B(0, 1) ∪B(3, 1) in Rn, with x0 = 0, Ω = B(0, 1) and p > n.

Proof. (a) Assume first that Cp({x0}) = 0, and let ε, δ > 0. By Proposition 4.7
in [10], there is 0 < r < δ such that capp(Br, Bδ) < ε. Since ε > 0 was arbitrary, we
obtain from Theorem 4.2 that (5.1) holds. The converse implication follows directly
from Lemma 5.2.

(b) If capp({x0},Ω) = 0 and Cp(X \ Ω) > 0, then [10, Proposition 4.6] shows
that Cp({x0}) = 0, and thus (5.1) holds by part (a). The converse implication
follows from Lemma 5.2 and the fact that if Cp(X \Ω) = 0 then u ≡ 1 is admissible
in the definition of capp({x0},Ω), which is thus zero.

Definition 5.4. An unbounded space X is p-parabolic if capp(B,X) = 0 for all
balls B ⊂ X, otherwise it is p-hyperbolic.

On (sub)Riemannian manifolds, p-parabolicity is often defined as the nonexis-
tence of global p-harmonic Green functions, which in those situations is known to
be equivalent to the above requirement that capp(B,X) = 0 for all balls B ⊂ X.
In the generality of this section, there is no available theory for p-harmonic func-
tions. Even in the standard setting of complete metric spaces with a doubling
measure supporting a Poincaré inequality, global p-harmonic Green functions are
little studied.

In Holopainen [33, p. 322], Holopainen–Koskela [34, p. 3428] and Holopainen–
Shanmugalingam [35, Definition 3.13], p-parabolicity was defined by requiring that
capp(K,X) = 0 for all compact sets K. This is equivalent to Definition 5.4 provided
that X is proper, but in nonproper spaces our definition seems to be more relevant.

Sufficient and/or necessary conditions for p-parabolicity using the integral (5.4)
below have been obtained under various assumptions in a number of papers, see
e.g. [18], [31]–[35] and the end of the introduction for more details. In [10, Propo-
sition 8.6 and Remark 8.7] we gave simple conditions for capp(B,X) = 0 (and
thus p-parabolicity) in terms of exponent sets defined for large radii similarly to S0

and S0. As in Proposition 5.1, also here there are cases in which these exponent
sets are not fine enough to capture when p-parabolicity holds, but using the esti-
mate in Theorem 4.2 we are now able to give a precise characterization, under mild
assumptions.

Theorem 5.5. Let X be unbounded and r0 > 0. Then X is p-parabolic if∫ ∞
r0

(
ρ

µ(Bρ)

)1/(p−1)

dρ =∞. (5.4)

If moreover µ is doubling and reverse-doubling at x0 and supports a p0-Poincaré
inequality at x0 for some 1 ≤ p0 < p, all three properties holding for large radii,
then X is p-parabolic if and only if (5.4) holds.

Condition (5.4) is clearly independent of the choices of r0 and x0. The first part
recovers Proposition 2.3 in Holopainen–Koskela [34].
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Proof. For the first part, let B ⊂ X be a ball. Then B ⊂ Br for some r ≥ r0, and
for R ≥ 2r we have by Proposition 4.6 that

capp(B,X) ≤ capp(Br, BR) .

(∫ R

2r

(
ρ

µ(Bρ)

)1/(p−1)

dρ

)1−p

→ 0, as R→∞,

whenever (5.4) holds.
For the converse implication in the second part we may assume that the doubling

and reverse-doubling conditions and the Poincaré inequality hold for balls Br =
B(x0, r) with r ≥ r0. If capp(Br, X) = 0 for some r ≥ r0, then let ε > 0 be arbitrary
and find u ∈ N1,p(X) so that u ≥ 1 on Br and

∫
X
gpu dµ < ε. For R ≥ 2r + 1, let

η(x) = min{(R − d(x, x0))+, 1} be a cut-off function. Then uη is admissible for
capp(Br, BR) and hence, by Theorem 4.2 and Remark 4.3,(∫ R

r

(
ρ

µ(Bρ)

)1/(p−1)

dρ

)1−p

' capp(Br, BR) ≤
∫
X

gpuη dµ

≤ 2p
(∫

X

gpu dµ+

∫
BR\BR−1

|u|p dµ
)
→ 2p

∫
X

gpu dµ < 2pε,

as R → ∞, since u ∈ Lp(X). As ε was arbitrary, we conclude that (5.4) holds (r0

therein can clearly be replaced by r).

The following example shows that the assumption of a Poincaré inequality can-
not be dropped from the second part of Theorem 5.5.

Example 5.6. For n ≥ 2, consider the following union of concentric layers

X = {x ∈ Rn : |x| /∈ E}, where E =

∞⋃
j=1

(22j−1, 22j) ⊂ R,

equipped with the Lebesgue measure. In this case X is p-parabolic for all 1 < p <
∞, but (5.4) fails if 1 < p < n. Thus the Poincaré assumption cannot be dropped,
even if µ is assumed to be globally doubling and globally reverse-doubling.

Similar connected examples are given by “the infinite chessboard”

X = R2 \
∞⋃

j,k=−∞

(
(2j, 2j + 1)× (2k, 2k + 1)

)
∪
(
(2j − 1, 2j)× (2k − 1, 2k)

)
and its generalizations to Rn, n ≥ 3.

6. p-harmonic, singular and Green functions

From now on, we assume that X is complete, that µ is doubling and supports a
p-Poincaré inequality, and that Ω ⊂ X is a nonempty open set with x0 ∈ Ω. As
always in this paper, 1 < p <∞.

In this section we first recall the definitions of p-harmonic and superharmonic
functions and present some of their important properties that will be needed later.
After that we recall results from Björn–Björn–Lehrbäck [11] on the existence and
properties of singular and Green functions.

It follows from the assumptions that X is proper and quasiconvex and thus
also connected and locally connected. Moreover, µ is reverse-doubling with ξ = 2.
These facts will be important to keep in mind. Recall also that by Keith–Zhong [36,
Theorem 1.0.1], X supports a p0-Poincaré inequality for some 1 ≤ p0 < p. This is
assumed explicitly in some of the papers we refer to below.
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The results in the rest of the paper also hold if X is a proper metric space
equipped with a locally doubling measure µ that supports a local p-Poincaré in-
equality, as defined in Björn–Björn [8], see [11, Section 11]. The dependence on the
constants will then be affected in a natural way.

Definition 6.1. A function u ∈ N1,p
loc (Ω) is a (super)minimizer in Ω if∫

ϕ6=0

gpu dµ ≤
∫
ϕ6=0

gpu+ϕ dµ for all (nonnegative) ϕ ∈ N1,p
0 (Ω).

A p-harmonic function is a continuous minimizer (by which we mean real-valued
continuous in this paper).

For various characterizations of minimizers and superminimizers see Björn [3]. It
was shown in Kinnunen–Shanmugalingam [43] that under our standing assumptions,
a minimizer can be modified on a set of zero (Sobolev) capacity to obtain a p-
harmonic function. For a superminimizer u, it was shown by Kinnunen–Martio [41]
that its lsc-regularization

u∗(x) := ess lim inf
y→x

u(y) = lim
r→0

ess inf
B(x,r)

u

is also a superminimizer and u∗ = u q.e.

Definition 6.2. A function u : Ω→ (−∞,∞] is superharmonic in Ω if
(i) u is lower semicontinuous;
(ii) u is not identically ∞ in any component of Ω;

(iii) for every nonempty open set G b Ω with Cp(X \ G) > 0, and all functions
v ∈ C(G) such that v is p-harmonic in G we have v ≤ u in G whenever v ≤ u
on ∂G.

As usual, by G b Ω we mean that G is a compact subset of Ω. By Theorem 6.1
in Björn [2] (or [5, Theorem 14.10]), this definition of superharmonicity is equivalent
to the definition usually used in metric spaces, e.g. in [5] and [11]. It also coincides
with the definitions used in Rn and on Riemannian manifolds. Superharmonic
functions are always lsc-regularized (i.e. u∗ = u). Any lsc-regularized supermini-
mizer is superharmonic, and conversely any bounded superharmonic function is an
lsc-regularized superminimizer and thus belongs to N1,p

loc (Ω).
The following definition of singular and Green functions in metric spaces was

given in [11, Definition 1.1]. Recall that a domain is a nonempty open connected
set.

Definition 6.3. Let Ω ⊂ X be a bounded domain. A positive function u : Ω →
(0,∞] is a singular function in Ω with singularity at x0 ∈ Ω if it satisfies the
following properties:
(S1) u is superharmonic in Ω;
(S2) u is p-harmonic in Ω \ {x0};
(S3) u(x0) = supΩ u;
(S4) infΩ u = 0;
(S5) ũ ∈ N1,p

loc (X \ {x0}), where

ũ =

{
u in Ω,

0 on X \ Ω.

A Green function is a singular function which satisfies

capp(Ω
b,Ω) = b1−p, when 0 < b < u(x0), (6.1)

where Ωb = {x ∈ Ω : u(x) ≥ b}.
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An earlier definition of singular functions along similar lines is due to Holopai-
nen–Shanmugalingam [35]. Under our assumptions and with natural interpretation
for the values at x0 and in X \Ω, a Green function as in Definition 6.3 is a singular
function in the sense of [35], while singular functions in [35] are special cases of
our singular functions. See [11, Section 12] for a more precise comparison of these
definitions.

The existence of singular and Green functions in bounded domains was studied
in detail in [11], and the following is one of the main results therein. Note that the
condition Cp(X \Ω) > 0 below is always true if X is unbounded. In fact, under the
assumption Cp(X \Ω) > 0 conditions (S3) and (S4) are superfluous in Definition 6.3
by [11, Theorem 1.6].

Theorem 6.4. (Theorem 1.3 in [11]) Let Ω ⊂ X be a bounded domain and let
x0 ∈ Ω. Then there exists a Green function in Ω with singularity at x0 if and only
if Cp(X \Ω) > 0. Moreover, if u is a singular function in Ω with singularity at x0,
then there is a unique α > 0 such that αu is a Green function.

Remark 6.5. Let u be a singular function in a bounded domain Ω. If Cp({x0}) > 0,
then gu ∈ Lp(Ω) by [11, Theorem 8.6]. Assume instead that Cp({x0}) = 0. As u

is p-harmonic in Ω \ {x0} it belongs to N1,p
loc (Ω \ {x0}) and thus has a minimal

p-weak upper gradient gu ∈ Lploc(Ω \ {x0}) in Ω \ {x0}. Since Cp({x0}) = 0,
Proposition 1.48 in [5] shows that gu is also a p-weak upper gradient of u within Ω,
even though gu /∈ Lploc(Ω), because of Theorem 6.6 below together with (S5). As

min{u, k} is a superminimizer in Ω (and thus belongs to N1,p
loc (Ω)), the function

Gu := lim
k→∞

gmin{u,k} (6.2)

is a p-weak upper gradient of u which is minimal in a certain sense, see Kinnunen–
Martio [42, Section 5] (or [5, Section 2.8]) for further details. As u ∈ N1,p

loc (Ω\{x0}),
we have Gu = gu a.e. in Ω \ {x0} and thus a.e. in Ω. For singular functions u, we
will therefore denote the minimal p-weak upper gradient by gu even within Ω.

Theorem 6.6. Let u be a Green function in a bounded domain Ω with singularity
at x0. Then the following are equivalent :

(a) u(x0) =∞;
(b) u is unbounded ;
(c) u /∈ N1,p(Ω);
(d) gu /∈ Lp(Ω);
(e) Cp({x0}) = 0;

(f)

∫ δ

0

(
ρ

µ(Bρ)

)1/(p−1)

dρ =∞ for some (or equivalently all) δ > 0.

In particular, all of these statements are true if p < s0 and false if p > s0.

Proof. The statements (a)–(e) were shown to be equivalent in [11, Theorem 8.6].
The equivalence (e)⇔ (f) follows from Proposition 5.3 (a) and the self-improvement
of the p-Poincaré inequality. The last part follows from Proposition 5.1.

7. Pointwise estimates for Green functions

Recall the general assumptions from the beginning of Section 6.

From Theorem 4.2 and [11, Theorem 1.5] we obtain the following pointwise es-
timates for Green functions. Recall that by Theorem 6.4, all estimates for Green
functions in this section also hold for singular functions u, but with comparison con-
stants also depending on u. For global Green functions on Riemannian manifolds,
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estimates similar to (7.3) were under various assumptions obtained in Holopai-
nen [33, Section 5].

Theorem 7.1. Let 0 < R1 ≤ R2 <
1
4 diamX be fixed. Assume that u is a Green

function with singularity at x0 in a domain Ω such that

BR1
⊂ Ω ⊂ BR2

.

If r := d(x, x0) < R1/50λ, where λ is the dilation constant in the Poincaré inequal-
ity, then

u(x) ' capp(Br,Ω)1/(1−p) &

(
rp

µ(Br)

)1/(p−1)

(7.1)

and

u(x) ' capp(Br, BR1)1/(1−p) ' capp(Br, BR2)1/(1−p) (7.2)

'
∫ R1

r

(
ρ

µ(Bρ)

)1/(p−1)

dρ '
∫ R2

r

(
ρ

µ(Bρ)

)1/(p−1)

dρ, (7.3)

with comparison constants depending only on p, the doubling constant of µ, the
constants in the Poincaré inequality, and in (7.2)–(7.3) also on the quotient R2/R1.

From now on we let Sr = {x : d(x, x0) = r}.

Proof. The first comparison in (7.1) follows from [11, Theorem 1.5] when x ∈ ∂Br.
To extend it to all x ∈ Sr, we use [11, Proposition 4.4] with r < ρ < min{2r,R1/50λ}
and K = Bρ \ 1

2Bρ as follows:

max
∂Br

u ≤ max
Sr

u ≤ max
K

u ≤ Amin
K

u ≤ Amin
Sr

u ≤ Amin
∂Br

u ≤ Amax
∂Br

u,

where A depends only on p, the doubling constant of µ and the constants in the
Poincaré inequality. The inequality in (7.1) then follows from [10, Proposition 5.1].
Next, Lemma 11.22 in [5] yields

capp(Br, BR2) ≤ capp(Br,Ω) ≤ capp(Br, BR1) . capp(Br, BR2),

and hence (7.2) holds, while (7.3) follows directly from Theorem 4.2.

If µ is Ahlfors Q-regular around x0 as in Theorem 1.2, then, by (7.3), u(x) '
r(p−Q)/(p−1) if p < Q and u(x) ' log(R1/r) if p = Q, while u(x) is bounded if
p > Q. The estimates (7.2) can also be combined with the capacity estimates
in [10] to describe the pointwise behaviour of Green functions as follows.

Corollary 7.2. Assume that the assumptions in Theorem 7.1 are satisfied, and in
particular that r := d(x, x0) < R1/50λ. Then the following are true, with compari-
son constants independent of u, x, r and Ω:

(a) If p < q
0
, then

u(x) '
(

rp

µ(Br)

)1/(p−1)

. (7.4)

(b) If p = q
0
∈ Q

0
, then

max

{(
Rp1

µ(BR1)

)1/(p−1)

log
R1

r
,

(
rp

µ(Br)

)1/(p−1)}
. u(x) .

(
rp

µ(Br)

)1/(p−1)

log
R1

r
. (7.5)
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(c) If p > q ∈ Q
0
, then

(
rp

µ(Br)

)1/(p−1)

. u(x) .

(
rq

µ(Br)

)1/(p−1)

.

(d) If p < s ∈ S0, then

1 . u(x) . r(p−s)/(p−1).

Proof. This follows directly from Theorem 7.1 together with [10, Theorems 1.1
and 1.2 and Propositions 6.2, 8.1 and 8.3].

Unweighted Rn with p = n shows sharpness of both the lower and upper bounds
in (b), and with p < n = s of the upper bound in (d).

Earlier, using the definition of singular functions in Holopainen–Shanmuga-
lingam [35], and especially the a priori superlevel set property therein, Danielli–
Garofalo–Marola [19, Theorem 5.2] established (7.4) for such functions. In the bor-
derline case p = q

0
∈ Q

0
, they also gave an estimate which is essentially equivalent

to (7.5), since the constant in [19, Theorem 5.2] in this case depends on rp/µ(Br);
cf. [19, Theorem 3.1].

Another consequence of (7.3) in Theorem 7.1 is that all Green functions with
respect to comparable open sets and comparable measures are comparable near the
singularity in the following sense.

Theorem 7.3. Let 0 < R1 ≤ R2 <
1
4 diamX be fixed. Assume that Ω1 and Ω2 are

domains such that

BR1
⊂ Ωj ⊂ BR2

, j = 1, 2.

Let µ1 and µ2 be doubling measures supporting p-Poincaré inequalities on X. As-
sume in addition that

µ1(Bρ) . µ2(Bρ) for all 0 < ρ ≤ R2. (7.6)

Also let uj be a Green function, with respect to µj, in Ωj with singularity at x0,
j = 1, 2. Then

u1(x) & u2(x) for all x ∈ BR1/50λ, (7.7)

with comparison constant depending only on p, R1, R2, the doubling and Poincaré
constants, and the comparison constant in (7.6).

Moreover, if K ⊂ Ω1 ∩ Ω2 is compact then

u1(x) & u2(x) for all x ∈ K,

with comparison constant also depending on K.

Proof. By Theorem 7.1,

uj(x) '
∫ R1

d(x,x0)

(
ρ

µj(Bρ)

)1/(p−1)

dρ, j = 1, 2, for all x ∈ BR1/50λ.

Thus (7.7) follows from (7.6).
For the last part, let Ω = Ω1 ∩ Ω2 ⊃ BR1

and 0 < R < R1/50λ. Since we
have already shown (7.7) we may replace K by (K \ BR) ∪ ∂BR and assume that
∂BR ⊂ K ⊂ Ω \ BR. As Ω1 is connected, every component of Ω1 \ {x0} that
intersects K must contain a point in ∂BR, and since ∂BR is compact there are only
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finitely many such components G1, ... , Gm of Ω1 \ {x0}. By Harnack’s inequality,
as in Corollary 8.19 in [5], there are constants Cj such that

sup
K∩Gj

v ≤ Cj inf
K∩Gj

v for every positive p-harmonic function v in Gj .

Together with [11, Proposition 4.4], this shows that supK u1 . infK u1. Similarly
supK u2 . infK u2, which together with (7.7) shows that u1 & u2 on K.

Theorem 7.3 can be seen as a generalization of the well-known comparisons for
the classical Green functions in Euclidean domains for various linear and nonlin-
ear elliptic equations, cf. Littman–Stampacchia–Weinberger [49, Theorem 7.1] and
Serrin [54, Theorem 12]. Those estimates state that near the singularity, Green
functions have certain predetermined growth and are thus comparable to the fun-
damental solution for the Laplace or p-Laplace equation, see also Section 13 below.
Such estimates have proved to be of great importance for both the interior and
boundary regularity of such equations. Theorem 7.3 and the other results in this
section provide us with similar comparisons for Green functions associated with the
energy functionals

∫
|∇u|p dµ for large classes of comparable measures.

On the contrary, the so-called quasiminimizers, introduced by Giaquinta and
Giusti [22], [23] as a natural unification of differential equations with various ellip-
ticities, can (even in unweighted Rn) have singularities of arbitrary order, depending
on the quasiminimizing constant, see Björn–Björn [6]. In particular, quasiminimiz-
ers are not always solutions to partial differential equations of p-Laplacian type,
since all such solutions have comparable behaviour near their singularity, by Ser-
rin [54, Theorem 12], and thus also the same integrability.

Remark 7.4. Assume that Ω is a bounded domain and BR ⊂ Ω. Let u be a
Green function in Ω with singularity at x0. If Cp({x0}) > 0, then u is bounded by
Theorem 6.6. On the other hand, if Cp({x0}) = 0 then (7.1) implies that for all
0 < r < R/50λ and x ∈ Sr,

C1 capp(Br,Ω)1/(1−p) ≤ u(x) ≤ C2 capp(Br,Ω)1/(1−p),

where C1, C2 > 0 depend only on p, the doubling constant of µ and the constants
in the Poincaré inequality, but not on u, x, r or Ω. In particular, letting r ↗ R2 :=
R/50λ, we see that

k := max
∂BR2

u ≤ C2 capp(BR2 ,Ω)1/(1−p)

and u− k is a Green function in

Ωk = {x ∈ Ω : u(x) > k} ⊂ BR2
.

As capp({x0},Ω) = 0 and capp is an outer capacity (by [5, Theorem 6.19 (vii)]), we
can now find R1 > 0 such that

capp(BR1
,Ω)1/(1−p) >

C2

C1
capp(BR2

,Ω)1/(1−p) ≥ k

C1
.

It follows that min∂BR1
u ≥ k and hence BR1

⊂ Ωk ⊂ BR2
. Note that R1 depends

only on R2, C1, C2 and Ω, but not on u. Since B50λR2
= BR ⊂ Ω 6= X by

Theorem 6.4, we also have that 50λR2 ≤ diamX and hence R2 <
1
4 diamX.

Applying Theorem 7.1 to u − k, Ωk ⊂ BR2
and r < R1/50λ, we thus see

that all the estimates in this section hold near the singularity for Green functions
in arbitrary bounded domains Ω, even if Ω is not contained in some BR2 with
R2 < 1

4 diamX. Note that Cp(X \ Ω) > 0, by Theorem 6.4, since the Green
function is presumed to exist.
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8. Integrability of superharmonic functions

Recall the general assumptions from the beginning of Section 6.

Green functions are particular examples of superharmonic functions. Before
studying special integrability properties of Green functions and their minimal p-
weak upper gradients we therefore recall general integrability results for superhar-
monic functions, due to Kinnunen–Martio [42, Theorems 5.1 and 5.6]. (On un-
weighted Rn (where θ0 = n), these results are due to Lindqvist [48, Theorems 1.4
and 4.2] while on weighted Rn, with a p-admissible weight, they were obtained by
Heinonen–Kilpeläinen–Martio [28, Theorem 7.46].)

Later in this section we will deduce a general result on integrability of the min-
imal p-weak upper gradients of superharmonic functions, which will play a crucial
role in Section 10. If u is superharmonic, we define Gu as in (6.2). That a superhar-
monic function fails to belong to N1,p

loc (Ω) only if it is too large is a consequence of
Proposition 7.4 in Björn–Björn–Parviainen [13] (or [5, Corollary 9.6]). Recall from
Section 3 that

θ0 = inf

{
θ > 0 :

µ(B(x, r))

µ(B(x,R))
&
( r
R

)θ
for all x ∈ X and 0 < r ≤ R < 2 diamX

}
and that θ0 ≥ 1, by Proposition 3.2.

Theorem 8.1. ([42, Theorems 5.1 and 5.6]) Let u be a superharmonic function
in Ω.

(a) If p ≤ θ0, then u ∈ Lτloc(Ω) and Gu ∈ Ltloc(Ω) whenever

0 < τ <


θ0(p− 1)

θ0 − p
, if p < θ0,

∞, if p = θ0,

and 0 < t <
θ0(p− 1)

θ0 − 1
,

respectively.
(b) If p > θ0, then u is continuous and thus locally bounded. Moreover, Gu ∈

Lploc(Ω) and Gu = gu.

In particular, it is always true that u,Gu ∈ Lp−1
loc (Ω).

Proof. In case (a), it follows from Theorem 5.1 in Haj lasz–Koskela [25] (or [5,
Theorem 4.21]) that so-called (q, p)-Poincaré inequalities hold for every 1 ≤ q <
θ0p/(θ0 − p) (every 1 ≤ q < ∞ if p = θ0). Thus this part follows directly from
Theorems 5.1 and 5.6 in [42] (or [5, Theorems 9.53 and 9.54]), upon letting θ → θ0.

In case (b), uk := min{u, k} is a superminimizer and thus belongs to N1,p
loc (Ω).

It then follows from Corollary 5.39 in [5] that uk is continuous and that all points
have positive capacity. In particular, considering uk with

lim inf
x→x0

u(x) < k < lim sup
x→x0

u(x)

leads to a contradiction and hence u is an (−∞,∞]-valued continuous function.
On the other hand, by Proposition 2.2 in Kinnunen–Shanmugalingam [44] (or

Corollary 9.51 in [5]), the set {x ∈ Ω : u(x) = ∞} has zero p-capacity, and thus
must be empty. Hence u is real-valued continuous, and therefore locally bounded.
Corollary 7.8 in Kinnunen–Martio [41] (or [5, Corollary 9.6]) then shows that u ∈
N1,p

loc (Ω), and in particular, gu = Gu ∈ Lploc(Ω).

Using the ideas from the proof of Kinnunen–Martio [42, Theorem 5.6], we obtain
the following generalization of Theorem 8.1, which will be important when studying
Green functions.
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Theorem 8.2. Let u be a superharmonic function in Ω.
(a) If u ∈ Lτloc(Ω) for all 0 < τ < τ0, then Gu ∈ Ltloc(Ω) whenever

0 < t <


pτ0
τ0 + 1

, if τ0 <∞,

p, if τ0 =∞.

(b) If u is locally bounded, then Gu ∈ Lploc(Ω).

It follows from Example 11.2 below that even if u ∈ Lτ0loc(Ω) then it can happen

that Gu /∈ Lpτ0/(τ0+1)
loc (Ω), which in particular shows that (a) is sharp if τ0 < ∞.

That it is sharp also when τ0 =∞ follows from unweighted Rn with p = n.

Proof. (b) If u is locally bounded then u ∈ N1,p
loc (Ω), by Corollary 7.8 in Kinnunen–

Martio [41] (or [5, Corollary 9.6]). In particular, gu = Gu ∈ Lploc(Ω).
(a) It suffices to consider τ0 < ∞, since the infinite case is obtained by letting

τ0 →∞. Let B ⊂ 2B b Ω be a ball and 0 < ε < τ0(p− t)/t− 1. Let

m = min
2B

u > −∞ and uk = min{u−m, k}+ 1, k = 1, 2, ... , (8.1)

which is a positive superminimizer in 2B. Then, using the Caccioppoli inequality
for superminimizers (Lemma 3.1 in Kinnunen–Martio [42] or [5, Proposition 8.8])
with a suitable cut-off function η ∈ Lipc(2B), we obtain∫
B

Gtu dµ = lim
k→∞

∫
B

gtuk
u
−(1+ε)t/p
k u

(1+ε)t/p
k dµ

≤ lim
k→∞

(∫
B

gpuk
u
−(1+ε)
k dµ

)t/p(∫
B

u
(1+ε)t/(p−t)
k dµ

)1−t/p

≤ C
(∫

2B

(u−m+ 1)p−(1+ε) dµ

)t/p(∫
B

(u−m+ 1)(1+ε)t/(p−t) dµ

)1−t/p

<∞,

where the first integral on the right-hand side is finite by the last part of Theo-
rem 8.1, while the last integral is finite by assumption.

9. Integrability of Green functions

In addition to the general assumptions from the beginning of Section 6, we assume
in this section that Ω ⊂ X is a bounded domain.

In this section we study Lτ -integrability (and nonintegrability) of Green func-
tions. In this case, we can improve upon the general integrability results for su-
perharmonic functions in Theorem 8.1. We state the results here and in the next
Section 10 for Green functions, but by Theorem 6.4 the same conclusions hold
for singular functions as well. See also Section 12 for similar results for general
p-harmonic functions with poles.

Note that, due to Theorem 7.3 and Remark 7.4, all Green functions with the
same singularity x0 belong to the same Lτ spaces. If p > s0, then by Proposi-
tion 5.1 (b) and Theorem 6.6 every Green function is bounded. We therefore omit
this case in the rest of this section. For p ≤ s0 we have the critical exponent

τp =


s0(p− 1)

s0 − p
, if p < s0,

∞, if p = s0.
(9.1)
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Theorem 9.1. Let u be a Green function in Ω with singularity at x0. If p ≤ s0

then u ∈ Lτ (Ω) for all 0 < τ < τp.

Since s0 ≤ θ0, we have for all p ≤ s0 that τp ≥ θ0(p − 1)/(θ0 − p), where the
right-hand side is the borderline exponent for τ in Theorem 8.1 and the inequality
is strict when s0 < θ0. Hence Green functions have higher integrability than what
is known for general superharmonic functions when s0 < θ0.

Remark 9.2. Danielli–Garofalo–Marola [19, Corollary 5.4] showed for singular
functions u, as defined in Holopainen–Shanmugalingam [35], that u ∈ Lτ (Ω) when-
ever

p < q := supQ and τ <
q(p− 1)

θ̃ − p
, where θ̃ = log2 Cµ ∈ Θ,

Cµ is the doubling constant of µ and

Q =

{
q > 0 : there is C so that

µ(Br)

µ(BR)
≤ C

( r
R

)q
for 0 < r < R <∞

}
. (9.2)

Note that q ≤ q
0
, where the inequality can be strict as the range in (9.2) is 0 <

r < R < ∞. They however also implicitly assumed that q ∈ Q, see [19, eq. (2.2)],
and that X is linearly locally connected (LLC), through their use (at the bottom
of p. 354) of Lemma 5.3 in Björn–MacManus–Shanmugalingam [15].

Note that q in [19] can be much smaller than our s0, which in turn can be much

smaller than θ̃. Thus, both the numerator and the denominator are in general worse
in [19] than in the critical exponent (9.1), and the range of possible exponents p
is smaller than here. Thus Theorem 9.1 is a substantial improvement upon the
results in [19]. Moreover, Theorem 9.1 is sharp (up to certain borderline cases), by
Theorem 9.3.

Proof of Theorem 9.1. We may assume that BR1
⊂ Ω ⊂ BR2

, where 0 < R1 ≤
R2 <

1
4 diamX, see Remark 7.4. Let rk = 2−kR1/50λ and Bk = Brk , k = 1, 2, ... .

By the assumptions on τ , we find s > s0 such that τ < s(p − 1)/(s − p) =: β. In
particular, s ∈ S0.

Consider x such that rk+1 ≤ r := d(x, x0) < rk. Then, by Theorem 7.1 and
since s ∈ S0,

u(x) '
∫ R1

r

(
ρp

µ(Bρ)1−p/sµ(Bρ)p/s

)1/(p−1)
dρ

ρ

.

(
1

µ(Br)1−p/s

)1/(p−1) ∫ R1

r

dρ

ρ
=

log(R1/r)

µ(Br)1/β
.

k

µ(Bk)1/β
.

As τ/β < 1, we have for any s ∈ S0 that∫
B1

uτ dµ .
∞∑
k=1

kτµ(Bk)1−τ/β .
∞∑
k=1

kτ2−ks(1−τ/β) <∞,

where we recall that S0 6= ∅ under our assumptions. Hence u ∈ Lτ (Ω).

Next we consider nonintegrability of u.

Theorem 9.3. Let u be a Green function in Ω with singularity at x0 and assume
that p ≤ s0.

(a) If τ > τp then u /∈ Lτ (Ω).
(b) If s0 /∈ S0 \ S0, then u /∈ Lτp(Ω).
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Proof. By Remark 7.4, we may assume that BR1
⊂ Ω ⊂ BR2

, where 0 < R1 ≤
R2 <

1
4 diamX. Let rk = 2−kR1/50λ and Bk = Brk , k = 0, 1, ... .

If p = s0, then τp =∞ and there is nothing to prove in (a), while Proposition 5.1
and Theorem 6.6 show that u /∈ L∞(Ω) in (b).

Assume now that p < s0. In case (a), let s > p be such that τ ≥ s(p−1)/(s−p)
and s /∈ S0. In case (b), we instead take s = s0 and τ = τp. In both cases, there is
a sequence kj ↗∞ such that µ(Bkj ) . rskj . As τ ≥ τp > p− 1, we therefore obtain

from (7.1) and the reverse-doubling property of µ that∫
B0

uτ dµ &
∞∑
k=0

(
rpk

µ(Bk)

)τ/(p−1)

µ(Bk) &
∞∑
j=0

r
pτ/(p−1)+s(1−τ/(p−1))
kj

=∞,

since the last exponent is nonpositive.

Thus, when p < s0 we know exactly which Lτ -integrability u has, apart from
the borderline case τ = τp. When p = s0 we also lack a complete characterization
of when u is bounded. This is however natural, as knowing S0 and S0 is not enough
to determine integrability and boundedness in these cases, see the last part with
p = s in Example 9.7 below and the comment before Lemma 5.2. At the same time,
under the assumption s0 /∈ S0 \ S0 we have a complete characterization, as follows.

Corollary 9.4. Let u be a Green function in Ω with singularity at x0 and assume
that p ≤ s0 /∈ S0 \ S0. Then u is unbounded, and u ∈ Lτ (Ω) if and only if τ < τp.

Proof. By Proposition 5.1, Cp({x0}) = 0 and hence u is unbounded by Theorem 6.6.
The rest of the conclusion follows directly from Theorems 9.1 and 9.3.

The following more general characterizations can be used also when the critical
case is not captured by the S-sets, and hence they complement Corollary 9.4 when
s0 ∈ S0 \ S0.

Theorem 9.5. Let u be a Green function in Ω with singularity at x0.
(a) If p < s0, then u ∈ Lτp(Ω) if and only if

∞∑
k=1

(
2−ks0

µ(B2−k)

)p/(s0−p)
<∞, (9.3)

or equivalently ∫ 1

0

(
ρs0

µ(Bρ)

)p/(s0−p) dρ
ρ
<∞.

(b) If p = s0, then u is bounded (i.e. u ∈ Lτp(Ω)) if and only if

∞∑
k=1

(
2−ks0

µ(B2−k)

)1/(s0−1)

<∞, (9.4)

or equivalently∫ 1

0

(
ρs0

µ(Bρ)

)1/(s0−1)
dρ

ρ
=

∫ 1

0

(
ρ

µ(Bρ)

)1/(s0−1)

dρ <∞.

Perhaps surprisingly, condition (9.4) is not the limit of (9.3), as p → s0, but
coincides with (9.3) for p = 1 (which however is not allowed in (a)).
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Proof. The equivalences between the sums and integrals are obvious. Part (b)
follows from Proposition 5.3 and Theorem 6.6, so we turn to (a).

By Remark 7.4, we may assume that BR1
⊂ Ω ⊂ BR2

, where 0 < R1 ≤ R2 <
1
4 diamX. Let rk = 2−kR1/50λ and Bk = Brk , k = 0, 1, ... . Consider x such that
rk+1 ≤ r := d(x, x0) < rk. By (7.1),

u(x) &

(
rpk

µ(Bk)

)1/(p−1)

.

Note from (9.1) that

τp
p− 1

=
s0

s0 − p
and

τp
p− 1

− 1 =
p

s0 − p
. (9.5)

Hence, using that µ is reverse-doubling with ξ = 2,∫
B1

uτp dµ &
∞∑
k=1

(
rpk

µ(Bk)

)τp/(p−1)

µ(Bk \Bk+1) '
∞∑
k=1

(
rs0k

µ(Bk)

)p/(s0−p)
, (9.6)

which diverges if and only if the sum in (9.3) diverges.
Conversely, we apply (7.3) to u(x) and obtain∫

B1

uτp dµ .
∞∑
k=1

( k∑
j=1

(
rpj

µ(Bj)

)1/(p−1))τp
µ(Bk \Bk+1). (9.7)

We distinguish two cases. If τp ≤ 1, then (9.7) gives∫
B1

uτp dµ .
∞∑
k=1

k∑
j=1

(
rpj

µ(Bj)

)τp/(p−1)

µ(Bk \Bk+1)

=

∞∑
j=1

(
rpj

µ(Bj)

)τp/(p−1) ∞∑
k=j

µ(Bk \Bk+1) =

∞∑
j=1

(
rpj

µ(Bj)

)τp/(p−1)

µ(Bj),

which, by (9.5), is the same as the last sum in (9.6).
If τp > 1, we rewrite (9.7) as∫

B1

uτp dµ .
∞∑
k=1

rεk

( k∑
j=1

r
p/(p−1)−ε/τp
j

µ(Bj)1/(p−1)−1/τp

(
rεjµ(Bk)

rεkµ(Bj)

)1/τp)τp
, (9.8)

where ε > 0. Now, for any 0 < q ∈ Q
0
, we have

rεjµ(Bk)

rεkµ(Bj)
.
(rk
rj

)q−ε
= 2(j−k)(q−ε).

The inner sum on the right-hand side of (9.8) is then estimated using (9.5) and
Hölder’s inequality with exponents τp and τp/(τp − 1), as follows

k∑
j=1

.

( k∑
j=1

r
s0p/(s0−p)−ε
j

µ(Bj)p/(s0−p)

)1/τp( k∑
j=1

2(j−k)(q−ε)/(τp−1)

)1−1/τp

.

For q > ε, the last sum is bounded from above by a constant, independent of
k. Hence, by inserting the previous estimate into (9.8) and changing the order of
summation, we obtain∫

B1

uτp dµ .
∞∑
k=1

rεk

k∑
j=1

(
rs0j

µ(Bj)

)p/(s0−p)
r−εj

=

∞∑
j=1

r−εj

(
rs0j

µ(Bj)

)p/(s0−p) ∞∑
k=j

rεk '
∞∑
j=1

(
rs0j

µ(Bj)

)p/(s0−p)
.
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Next we compare Green functions for different parameters p under a natural
assumption on the validity of Poincaré inequalities.

Corollary 9.6. Assume that µ supports a p0-Poincaré inequality for some 1 ≤ p0 <
s0. For each p0 < p ≤ s0, let up be a Green function in Ω with singularity at x0

with respect to p. Then the following are true:
(a) If p0 < p1 < p2 < s0 and up1 ∈ Lτp1 (Ω), then up2 ∈ Lτp2 (Ω).
(b) If us0 is bounded, then up ∈ Lτp(Ω) for all p0 < p < s0.

Note that τp1 < τp2 < ∞ in (a). Example 9.7 below shows that the converse
implications can fail, and that it is possible to have up ∈ Lτp(Ω) for all 1 < p < s0

but not for p = s0.

Proof. (a) Let ak = 2−ks0/µ(B2−k). Then by Theorem 9.5, upj ∈ L
τpj (Ω) if and

only if
∞∑
k=1

a
pj/(s0−pj)
k <∞.

Hence, if up1 ∈ Lτp1 (Ω), then

∞∑
k=1

a
p2/(s0−p2)
k ≤

( ∞∑
k=1

a
p1/(s0−p1)
k

)β2/β1

<∞,

where β2 := p2/(s0 − p2) > p1/(s0 − p1) =: β1. The proof of (b) is similar upon
noting that condition (9.4) is condition (9.3) with p = 1 in Theorem 9.5.

Example 9.7. Let s > 1, β > 0 and n ≥ 2. Consider Rn equipped with the
measure dµ = w dx, where (by abuse of notation) w(x) = w(|x|) and

w(ρ) =

{
ρs−n|log ρ|β , if 0 < ρ ≤ 1/e,

ρs−n, otherwise.

Let u be a Green function with singularity at x0 = 0 in a bounded domain Ω 3 x0.
By [10, Proposition 10.5 and Remark 10.6], µ is doubling and supports a 1-Poincaré
inequality, i.e. w is 1-admissible on Rn. Moreover, by Example 3.1 in [10],

S0 = Q
0

= (0, s) and S0 = Q0 = [s,∞).

In particular, s0 = q
0

= s0 = q0 = s and s0 ∈ S0 \ S0, so the assumption on s0 in
Theorem 9.3 (b) and Corollary 9.4 fails.

It was also observed in Example 3.1 in [10] that µ(Br) ' rs|log r|β for r ≤ 1/e.
Thus

2−ks

µ(B2−k)
' 1

kβ
. (9.9)

Hence, by Theorem 9.5 (a), for p < s,

u ∈ Lτp(Ω, w) if and only if
βp

s− p
> 1, i.e.

s

1 + β
< p < s,

showing that the sets S0 and S0 themselves are not fine enough to determine the
borderline Lτp -integrability of Green functions. In particular, if β ≥ s − 1, then
u ∈ Lτp(Ω, w) for all 1 < p < s.

For p = s, Theorem 9.5 (b) and (9.9) show that u is bounded if and only if
β > s − 1. In particular, if β = s − 1, then u ∈ Lτp(Ω, w) for all 1 < p < s, but
u /∈ Lτp(Ω, w) when p = s.
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10. Integrability of gradients of Green functions

In addition to the general assumptions from the beginning of Section 6, we assume
in this section that Ω ⊂ X is a bounded domain.

In this section we turn to the Lt-integrability of the minimal p-weak upper
gradient gu of a Green function u. See Remark 6.5 for how to interpret gu. If
p > s0 then gu ∈ Lp(Ω), by Proposition 5.1 (b) and Theorem 6.6, and we therefore
omit this case in the rest of this section. Thus, in particular, we assume that s0 > 1.
The exponent

tp =
s0(p− 1)

s0 − 1

will be critical. Note that

tp =
pτp
τp + 1

< τp if p < s0 (10.1)

and that tp ≥ 1 if and only if p ≥ 2− 1/s0.

Theorem 10.1. Let u be a Green function in Ω with singularity at x0 and assume
that p ≤ s0. Then gu ∈ Lt(Ω) whenever 0 < t < tp.

Moreover, u ∈ N1,t(Ω) whenever 1 ≤ t < tp.

Since s0 ≤ θ0, we have for all p ≤ s0 that tp ≥ θ0(p−1)/(θ0−1), where the right-
hand side is the borderline exponent t in Theorem 8.1 and the inequality is strict
when s0 < θ0. Hence the minimal p-weak upper gradients of Green functions have
higher integrability than what is known for the minimal p-weak upper gradients of
general superharmonic functions when s0 < θ0.

It follows from Danielli–Garofalo–Marola [19, Corollary 5.4] that gu ∈ Lt(Ω) if
p < q and t < q(p − 1)/(θ̃ − 1), where q, θ̃ and X are as in Remark 9.2. Thus
Theorem 10.1 is a substantial improvement upon the results in [19]. Moreover,
Theorem 10.1 is sharp by Theorem 10.3, at least when tp ≥ 1 and X supports a
tp-Poincaré inequality at x0 for small radii.

Proof of Theorem 10.1. The first part follows directly from Theorem 9.1 together
with Theorem 8.2, (10.1) and (S5) in Definition 6.3. If 1 ≤ t < tp, then gu is
also a t-weak upper gradient of u (although not necessarily minimal). Moreover,
u ∈ Lt(Ω) by Theorem 9.1 and thus u ∈ N1,t(Ω).

For p = s0 we get the following consequences, when combining Theorem 10.1
with Theorem 6.6.

Corollary 10.2. Assume that p = s0.
(a) If Cp({x0}) = 0, then gu ∈ Lt(Ω) if and only if 0 < t < p.
(b) If Cp({x0}) > 0, then gu ∈ Lp(Ω).

If µ supports a suitable global Poincaré inequality, then nonintegrability results
for gu can be obtained by combining Theorem 9.3 and the Sobolev inequality (see [5,
Corollary 4.23]) determined by the global exponent set Θ. For instance, in the case
when p < Q and µ is globally Ahlfors Q-regular, so that s0 = Q ∈ Θ, and µ
supports a global t-Poincaré inequality for t ≥ max{1, tp}, this already leads to the
nonintegrability results in Theorem 1.2 (c), since otherwise the Sobolev inequality
together with gu ∈ Lt(Ω) would imply that u is bounded (when t ≥ Q) or that

u ∈ LQt/(Q−t)(Ω) ⊂ Lτp(Ω) (when tp ≤ t < Q).

When t = tp, this is sharp by Theorem 1.2 (b). Using the Sobolev inequality from
[8, Theorem 5.1] makes it possible to instead use a local t-Poincaré inequality and
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a local exponent set (defined similarly to the global exponent set Θ). However,
considering the 1-admissible power weight w(x) = |x|−α on Rn, as in Example 3.1,
with 0 < α < n − 1 and x0 = 0, shows that such a direct application of Sobolev
inequalities does not lead to the results in Theorems 1.1 (f) and 1.2 (c), which use
the pointwise exponent set S0 (and only assume a pointwise t-Poincaré inequality).
Indeed, in this case s0 = n − α < n while the infimum of the local exponent set is
n. (If n − 1 ≤ α < n, then s0 ≤ 1 < p and the Green function u is bounded and
gu ∈ Lp(Ω).)

More generally, under our weaker assumptions, for the nonintegrability of gu it
is convenient to use one more exponent,

q̂ = q
0

+ 1−
q

0

s0
.

The reason for introducing q̂ is that tp < q
0

if and only if p < q̂, which will be
important below. Note that q̂ ≤ s0, with equality if and only if q

0
= s0, since

s0 > 1.

Theorem 10.3. Let u be a Green function in Ω, with singularity at x0.
(a) If p < s0, then gu /∈ Lt(Ω) whenever µ supports a t-Poincaré inequality at x0

for small radii, t > tp and t ≥ 1.
(b) If p < q̂, tp ≥ 1 and s0 /∈ S0 \ S0, then gu /∈ Ltp(Ω) whenever µ supports a

tp-Poincaré inequality at x0 for small radii.
(c) If q̂ ≤ p < s0 /∈ S0 \ S0 and q

0
> 1, then gu /∈ Ltp(Ω) whenever µ supports a

t0-Poincaré inequality at x0 for small radii and some 1 ≤ t0 < tp.

Note that q
0
> tp ≥ 1 in (b), while q

0
> 1 needs to be assumed explicitly in (c).

Proof. By Remark 7.4, we may assume that BR1
⊂ Ω ⊂ BR2

, where 0 < R1 ≤
R2 <

1
4 diamX. The strong minimum principle for superharmonic functions (The-

orem 9.13 in [5]) and (7.1) imply that for 0 < r < R1/50λ,

mr := inf
Br

u = min
∂Br

u &

(
µ(Br)

rp

)1/(1−p)

. (10.2)

(a) Note that tp < p < s0. Let q > max{t, s0}. Since min{1, u/mr} is admissible
for capt(Br,Ω), we obtain by [10, Proposition 8.3] that∫

Ω\Br

gtu dµ ≥ mt
r capt(Br,Ω) ≥ mt

r capt(Br, BR2
) &

(
µ(Br)

rp

)t/(1−p)
rq−t. (10.3)

If s < s0, then there is a sequence rj ↘ 0 such that µ(Brj ) . rsj . For this sequence,
(10.3) becomes ∫

Ω\Brj

gtu dµ & r
(s−p)t/(1−p)+q−t
j →∞, as j → 0,

provided that the exponent (s− p)t/(1− p) + q − t < 0, which is equivalent to

q <
t(s− 1)

p− 1
.

Clearly, for every t > tp, this is satisfied for some q > max{t, s0} and s < s0, and
(a) follows.

(b) Since s0 ∈ S0 or s0 /∈ S0, there is a sequence rk ↘ 0 such that µ(Brk) . rs0k ,
k = 0, 1, ... . Let Bk = Brk and write ak = mrk . Because limr→0mr = ∞, we can
also assume that

1
2ak+1 ≥ Ak := max

∂Bk
u,
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rk+1 <
1
2rk and that r0 < R1/50λ is so small that the tp-Poincaré inequality at x0

holds for radii up to 2r0. This will be important below when we use the capacity
estimates from [10]. Then for all k = 1, 2, ... ,

vk =
(min{u, ak} −Ak−1)+

ak −Ak−1

is admissible for captp(Bk, Bk−1). Moreover, ak − Ak−1 ≥ 1
2ak. As gu is also a

tp-weak upper gradient of u (although not necessarily minimal), we have∫
Bk−1\Bk

gtpu dµ ≥ (ak −Ak−1)tp
∫
Bk−1\Bk

gtpvk dµ & a
tp
k captp(Bk, Bk−1). (10.4)

Since p < q̂, we see that tp < q
0
. As µ supports a tp-Poincaré inequality at x0

for radii up to 2r0, we get by [10, Proposition 6.1], using also (10.2) and tp ≥ p− 1,
that ∫

B1

gtpu dµ &
∞∑
k=1

a
tp
k captp(Bk, Bk−1) &

∞∑
k=1

(
rpk

µ(Bk)

)tp/(p−1)
µ(Bk)

r
tp
k

=

∞∑
k=1

r
tp/(p−1)
k µ(Bk)1−tp/(p−1) &

∞∑
k=1

rβk ,

where

β =
tp

p− 1
+ s0

(
1− tp

p− 1

)
= s0 − (s0 − 1)

tp
p− 1

= s0 − s0 = 0.

Thus the series
∑∞
k=1 r

β
k diverges and hence gu /∈ Ltp(Ω).

(c) We proceed as in (b) up to (10.4), but this time assuming a t0-Poincaré
inequality at x0 for radii up to 2r0. As p ≥ q̂, we see that q

0
≤ tp < p. Let

1 < q < q
0

and α =
p− tp
p− q

=
s0 − p

(s0 − 1)(p− q)
.

Theorem 7.1 shows that

ak ' capp(B
k,Ω)1/(1−p) ≥ capp(B

k, Bk−1)1/(1−p),

and Corollary 4.10 (b) with t = tq then implies that

a
tp
k captp(Bk, Bk−1) & capp(B

k, Bk−1)tp/(1−p) captp(Bk, Bk−1)

& capp(B
k, Bk−1)tp/(1−p)+1−α

(
µ(Bk)

rqk

)α
. (10.5)

Note that
tp

1− p
+ 1 =

s0

1− s0
+ 1 =

1

1− s0
< 0.

Hence also tp/(1− p) + 1− α < 0 and [10, Proposition 5.1] gives

capp(B
k, Bk−1)tp/(1−p)+1−α &

(
µ(Bk)

rpk

)tp/(1−p)+1−α

=

(
µ(Bk)

rpk

)1/(1−s0)−α

.

(10.6)
Since α(p− q)(1− s0) = p− s0, we obtain from (10.5) and (10.6) that

a
tp
k captp(Bk, Bk−1) &

(
µ(Bk)

rpk

)1/(1−s0)−α(
µ(Bk)

rqk

)α
=

(
µ(Bk)

r
p−α(p−q)(1−s0)
k

)1/(1−s0)

=

(
µ(Bk)

rs0k

)1/(1−s0)

& 1,
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by the choice of rk. Hence, by applying (10.4) and summing up the estimates, we
conclude that gu /∈ Ltp(Ω).

In the following case we get a complete characterization.

Corollary 10.4. Let u be a Green function in Ω, with singularity at x0. Assume
that 1 < 2− 1/s0 ≤ p ≤ s0 /∈ S0 \S0 and that one of the following conditions holds:

(a) µ supports a t0-Poincaré inequality at x0 for small radii and some t0 < tp;
(b) p < q̂ and µ supports a tp-Poincaré inequality at x0 for small radii ;
(c) p = s0.

Then gu ∈ Lt(Ω) if and only if 0 < t < tp.

In particular, Corollary 10.4 applies if 1 < 2 − 1/Q ≤ p ≤ Q and µ is locally
Ahlfors Q-regular at x0, as in Theorem 1.2, and supports a tp-Poincaré inequality at
x0 for small radii, since in this case q̂ = q

0
= s0 = Q ∈ S0. Under the assumptions

in Corollary 10.4, it follows from Corollary 9.4 that u ∈ Lτ (Ω) if and only if τ < τp,
i.e. we have a full characterization for the integrability of both u and gu.

Proof. Since 2− 1/s0 ≤ p ≤ s0, we have 1 ≤ tp ≤ p. Parts (a) and (b) thus follow
from Theorems 10.1 and 10.3 (b)–(c), while part (c) follows from Proposition 5.1 (a)
and Corollary 10.2 (a).

We have now also completed the proofs of Theorems 1.1 and 1.2. More precisely,
they are deduced as follows.

Proof of Theorem 1.1. Part (a) follows from Proposition 5.1 (b) and Theorem 6.6,
while parts (b)–(f) follow directly from Theorems 9.1, 9.3 (a), 10.1, Corollary 10.2 (a)
and Theorem 10.3 (a), respectively.

Proof of Theorem 1.2. Formula (1.4) follows from (7.3), while (a)–(c) follow from
Theorem 1.1, together with Theorem 9.3 (b) for (a) and Theorem 10.3 (b) for (c).
Note that in this case, q̂ = q

0
= s0.

11. Radial weights

Radial weights are useful for creating examples with various properties related to the
exponent sets Q

0
, S0, S0 and Q0, see Example 9.7, [10, Section 3], H. Svensson [56]

and S. Svensson [57].
In this section we take a more detailed look at the integrability of Green functions

for radial weights. Throughout this section we consider Rn, n ≥ 2, equipped with
a radial p-admissible measure dµ = w(|x|) dx.

We also let x0 = 0 and Ω = B1, and define for x ∈ B1,

u(x) =

∫ 1

|x|

(
w(ρ)ρn−1

)1/(1−p)
dρ. (11.1)

Then u is p-harmonic in B1 \ {0} and (6.1) holds, see [10, Proposition 10.8 and its
proof]. Thus, u is a Green function by [11, Theorem 8.5]. The proof of Proposi-
tion 10.8 in [10] also shows that

gu(x) =
(
w(|x|)|x|n−1

)1/(1−p)
and thus ∫

B1

gtu dµ = ωn−1

∫ 1

0

(
w(ρ)ρn−1

)−t/(p−1)
w(ρ)ρn−1 dρ

= ωn−1

∫ 1

0

(
w(ρ)ρn−1

)1−t/(p−1)
dρ,
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where ωn−1 is the surface area of the (n− 1)-dimensional sphere Sn−1.
In particular, ∫

B1

gtpu dµ = ωn−1

∫ 1

0

(
w(ρ)ρn−1

)1/(1−s0)
dρ (11.2)

which is independent of p. (We do not know if in other situations the integrabil-
ity in the borderline case tp can depend on p.) Note that gu = |∇u| a.e. in Ω,
by [5, Proposition A.13], where ∇u is the gradient of u in the weighted Sobolev
space H1,p

loc (Ω \ {x0}, w) as in Heinonen–Kilpeläinen–Martio [28, Section 2]. As a
consequence we get the following improvement of Corollary 10.4 for radial weights,
covering also the case 1 < p < 2− 1/s0, i.e. when tp < 1 and thus gu /∈ L1(Ω, w).

Proposition 11.1. Assume that p ≤ s0 /∈ S0 \ S0, dµ = w(|x|) dx on Rn and that
µ supports a q-Poincaré inequality at x0 for small radii and some q < q

0
. Let u be

the radially symmetric Green function as in (11.1). Then gu ∈ Lt(Ω, w) if and only
if 0 < t < tp.

Note that u of course depends on p. Moreover, the assumption that w is p-
admissible may implicitly further limit the range of p in Proposition 11.1.

Proof. By continuity we find 1 < p0 < s0 so that tp0 = q. Since q < q
0
, it follows

that p0 < q̂. Thus Theorem 10.3 (b) shows that gu /∈ Ltp0 (Ω, w) for p = p0. By
(11.2), we get that gu /∈ Ltp(Ω, w) is true for all 1 < p ≤ s0. The integrability for
t < tp follows from Theorem 10.1.

Example 11.2. Consider the weight w as in Example 9.7, i.e.

w(ρ) =

{
ρs−n|log ρ|β , if 0 < ρ ≤ 1/e,

ρs−n, otherwise,

where s > 1 and β > 0. As observed in Example 9.7, w is 1-admissible on Rn,

s0 = q
0

= s0 = q0 = s, S0 = Q
0

= (0, s) and S0 = Q0 = [s,∞).

Then the case t = tp is not covered by Theorem 10.3, but all other exponents are
covered by either Theorem 10.1 or 10.3 (a), when p < s. For t = tp, (11.2) simplifies
to ∫

B1

gtpu dµ '
∫ 1/e

0

dρ

ρ|log ρ|β/(s−1)
,

which converges if and only if β > s− 1. So if 0 < β ≤ s− 1, then gu /∈ Ltp(Ω, w),
while u ∈ Lτp(Ω, w) if and only if s/(1 + β) < p < s, by Example 9.7. Since
tp = pτp/(τp + 1), this shows that the strict inequalities in Theorem 8.2 cannot be
replaced by nonstrict ones, when τp <∞.

On the other hand, for p = s, Theorem 6.6 shows that u ∈ Lτp(Ω, w) (i.e. u is
bounded) if and only if gu ∈ Lp(Ω, w). According to Example 9.7, this is equivalent
to β > s− 1.

12. General p-harmonic functions with poles

Recall the general assumptions from the beginning of Section 6.

In [11, Theorem 10.1] it was shown that any p-harmonic function in Ω \ {x0}
with a pole at x0 has similar growth properties near the pole as Green functions
with singularity at x0. Hence the results in the previous sections can be extended
to such functions, in a local sense.
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Theorem 12.1. Assume that u is a p-harmonic function in Ω \ {x0} such that
u(x0) := limx→x0

u(x) =∞. Then the following are true:
(a) Cp({x0}) = 0;
(b) p ≤ s0;
(c) u ∈ Lτloc(Ω) for all 0 < τ < τp;
(d) u /∈ Lτloc(Ω) if τ > τp;
(e) if s0 /∈ S0 \ S0, then u /∈ Lτploc(Ω);
(f) u ∈ Lτploc(Ω) if and only if p < s0 and (9.3) holds, or p = s0 and (9.4) holds;
(g) gu ∈ Ltloc(Ω) for all 0 < t < tp;
(h) if p = s0, then gu ∈ Ltloc(Ω) if and only if 0 < t < p;
(i) if p < s0, then gu /∈ Ltloc(Ω) whenever µ supports a t-Poincaré inequality at

x0 for small radii, t > tp and t ≥ 1;

(j) if p < q̂, tp ≥ 1 and s0 /∈ S0 \ S0, then gu /∈ Ltploc(Ω) whenever µ supports a
tp-Poincaré inequality at x0 for small radii ;

(k) if q̂ ≤ p < s0 /∈ S0 \ S0 and q
0
> 1, then gu /∈ L

tp
loc(Ω) whenever µ supports a

t0-Poincaré inequality at x0 for small radii and some 1 ≤ t0 < tp.

Proof. By Theorems 1.3 (b) and 10.1 (b) in [11], there are a > 0, b ∈ R and a
bounded domain U ⊂ Ω such that x0 ∈ U and v := au+ b is a Green function in U
with singularity at x0.

As u is p-harmonic in Ω\{x0} it is locally bounded therein and also gu ∈ Lploc(Ω\
{x0}). It is therefore enough to consider the integrability and nonintegrability
conditions on U (since we only consider Ltloc-integrability of gu for t ≤ p). Note
that gv = agu.

(a) This follows from Theorem 10.1 (a) in [11].
(b) This follows from (a) and Proposition 5.1 (b).
(c) This follows from Theorem 9.1.
(d) and (e) These statements follow from Theorem 9.3.
(f) This follows from Theorem 9.5.
(g) This follows from Theorem 10.1.
(h) This follows from Corollary 10.2.
(i)–(k) These statements follow from Theorem 10.3.

Theorem 12.2. Assume that u ≥ 0 is a p-harmonic function in B50λR \ {x0} such
that u(x0) := limx→x0

u(x) =∞. Then for all 0 < r < R/50λ and x ∈ Sr,

u(x) ' A
(

inf
BR

u+

∫ R

r

(
ρ

µ(Bρ)

)1/(p−1)

dρ

)
, (12.1)

where the implicit comparison constants are independent of u, while A depends on
u only as follows,

A =

(∫
a<u<a+1

gpu dµ

)1/(p−1)

for any a ≥ max
∂BR

u. (12.2)

Note that A = capp(Ga+1, Ga)1/(p−1), where Ga = {y ∈ BR : u(y) > a}. The

proof below shows that the integral in (12.1) can be replaced by capp(Br,Ω0)1/(1−p),
where

Ω0 = {x ∈ BR : u(x) > max
∂BR

u}.

This integral can thus be estimated by capp(Br, BR)1/(1−p) and capp(Br, BR1)1/(1−p)

from above and below, respectively, whenever BR1 ⊂ Ω0. In particular, The-
orem 12.2 generalizes the estimates obtained for p-harmonic Green functions in
Danielli–Garofalo–Marola [19, Lemma 5.1].
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Proof of Theorem 12.2. Proposition 4.4 in [11] implies that

k0 := max
∂BR

u ' min
∂BR

u = inf
BR

u, (12.3)

with the implicit comparison constants depending only on p, the doubling constant
of µ and the constants in the Poincaré inequality. By [11, Theorem 1.6], u − k0

is a singular function in Ω0 = {x ∈ BR : u(x) > k0}, and thus capp({x0},Ω) =
Cp({x0}) = 0, by Theorem 6.6. Hence, [11, Theorem 9.3] implies that ũ = (u−k0)/A
is a Green function in Ω0, where A > 0 is given by (12.2). Let BR1

⊂ Ω0. Applying
(7.1) to ũ and Ω0, instead of u and Ω, shows that for all 0 < r < R1/50λ and
x ∈ Sr,

k0 + C1A capp(Br,Ω0)1/(1−p) ≤ u(x) ≤ k0 + C2A capp(Br,Ω0)1/(1−p), (12.4)

where C1, C2 > 0 depend only on p, the doubling constant of µ and the constants
in the Poincaré inequality, but not on R1, u, x or Ω0.

By Theorem 6.3 in Björn [4] (or [11, Lemma 4.3]), u is superharmonic in B50λR.
As u is nonconstant, [5, Corollary 9.14] shows that X 6= B50λR, and thus 50λR ≤
diamX. Since BR1

⊂ Ω0 ⊂ BR, we therefore conclude from Theorem 4.2 that

capp(Br,Ω0)1/(1−p) ≤ capp(Br, BR)1/(1−p) '
∫ R

r

ψ(ρ) dρ,

capp(Br,Ω0)1/(1−p) ≥ capp(Br, BR1)1/(1−p) '
∫ R1

r

ψ(ρ) dρ, (12.5)

where

ψ(ρ) =

(
ρ

µ(Bρ)

)1/(p−1)

.

Moreover, as capp({x0},Ω0) = 0, Theorem 4.2 also implies that
∫ R1

0
ψ(ρ) dρ = ∞.

Thus, there exists r1 < R1/50λ such that for all 0 < r ≤ r1, the integral in (12.5)
satisfies ∫ R1

r

ψ(ρ) dρ =

∫ R

r

ψ(ρ) dρ−
∫ R

R1

ψ(ρ) dρ ≥ 1

2

∫ R

r

ψ(ρ) dρ.

Inserting this into (12.5) and (12.4), together with (12.3), proves (12.1) for r ≤ r1.
In order to obtain (12.1) for r < R/50λ, let v be a Green function in BR with

singularity at x0, and let v = 0 outside BR. In particular, v ∈ N1,p
loc (X \ {x0}).

Then by (7.3), applied to v and Ω = BR, we have

v(x) '
∫ R

r

ψ(ρ) dρ, where r = d(x, x0) < R/50λ, (12.6)

with the implicit constants depending only on p, the doubling constant of µ and
the constants in the Poincaré inequality. In particular, together with the already
proved (12.1) for r ≤ r1, we have

Av ' u− k0 ≤ u−m on ∂Br1 , where m := min
∂BR

u ≤ k0.

Since u − k0 ≤ 0 = Av ≤ u −m on ∂BR, the comparison principle for p-harmonic
functions with Sobolev boundary values ([5, Lemma 8.32]) implies that u − k0 .
Av . u − m in BR \ Br1 . Thus, (12.6) and (12.3) show that (12.1) holds for all
r < R/50λ.
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Remark 12.3. The estimate in Theorem 12.2 is related to the so-called Wolff
potential

W ν
1,p(x,R) =

∫ R

0

(
ν(B(x, ρ))

ρn−p

)1/(p−1)
dρ

ρ
, (12.7)

which was (together with another nonlinear analogue of the Riesz potential, namely
the Maz′ya–Havin potential) introduced and studied in Maz′ya–Havin [51], [52].
The potential (12.7) was used in Kilpeläinen–Malý [40, Theorem 1.6] to estimate
p-superharmonic functions u ≥ 0 in B(x, 3R) ⊂ Rn (unweighted) as

W ν
1,p(x,R) . u(x) . inf

B(x,R)
u+W ν

1,p(x, 2R), (12.8)

where ν = −∆pu is the Riesz measure of u.
In the case of Green functions, ν = δx0 is the Dirac measure at x0 and hence

W
δx0
1,p (x,R) =

∫ R

r

ρ(p−n)/(p−1)−1 dρ when r = |x− x0| < R,

which is comparable to the integral in (12.1), since the Lebesgue measure of B(x, ρ)
is a multiple of ρn. Thus, our Theorem 12.2 extends (12.8) for the Dirac measure
to p-harmonic functions with poles in metric spaces, even in the case when there is
no p-harmonic equation.

Proof of Theorem 1.3. This follows directly from Theorems 12.1, 12.2 and 7.1.

13. Elliptic equations in divergence form

Estimates similar to (12.8) also hold for elliptic differential equations in divergence
form of the type

divA(x,∇u) = 0, (13.1)

including weighted and vectorial ones, see Kilpeläinen–Malý [39], [40], Mikkonen [53],
Hara [26], the monograph Heinonen–Kilpeläinen–Martio [28, Theorem 21.21] and
the expository papers Kuusi–Mingione [46], [47]. On metric spaces, such estimates
have been obtained for Cheeger p-harmonic functions in Björn–MacManus–Shan-
mugalingam [15] and Hara [27].

In this section we explain how to extend our (non)integrability results from
energy minimizers to Green functions for (13.1), i.e. functions u satisfying

divA(x,∇u) = −δx0

in Ω with zero boundary values on ∂Ω (in Sobolev sense). Here, ∇u stands for one
of the following gradients:

� Usual (distributional) gradient in unweighted Rn or the gradient defined for
the weighted Sobolev spaceH1,p

loc (Ω, w) as in Heinonen–Kilpeläinen–Martio [28,
Section 1.9].

� Natural gradient ∇u on Riemannian manifolds with nonnegative Ricci curva-
ture as in Holopainen [31], [32] and [33].

The vector-valued function A(x, ξ) is for a.e. x and all ξ assumed to satisfy
the usual ellipticity conditions as in [28, (3.3)–(3.7)], Fabes–Jerison–Kenig [20] or
Holopainen [32, (2.9)–(2.12)]. Subelliptic equations associated with left-invariant
vector fields

Xu = (X1u, ... ,Xku)
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in Heisenberg or Carnot groups, as in Haj lasz–Koskela [25, Sections 11.3 and 11.4]
or Capogna–Danielli–Garofalo [16], could also be considered with obvious interpre-
tations, whenever the main ingredients, specified below, are satisfied.

For the integrability of the Green functions for divA(x,∇u) = 0, it is sufficient
to invoke the capacitary estimate

u(x) ' capp,µ(Br,Ω)1/(1−p) for sufficiently small r := d(x, x0) > 0, (13.2)

which has been proved in weighted Rn in [20, Lemma 3.1] (for p = 2) and in
[28, Theorem 7.41] (for balls and 1 < p < ∞), while on manifolds it follows from
the proof of Theorem 3.19 in [31]. On unweighted Rn it appears in Serrin [54,
Section 12]. As mentioned before, estimates for capacitary potentials similar to
those from Maz′ya [50, Lemmas 3 and 4] are a useful tool for estimates like (13.2).

In view of (7.1), estimate (13.2) implies that u is in a neighbourhood of x0

comparable to the Green function considered in this paper and thus has the same
(non)integrability properties.

We can also obtain (non)integrability results for the gradient ∇u. In addition
to (13.2) and our results in the previous sections, the only required tools are the
minimum principle and the Caccioppoli inequality∫

B

|∇v|pv−(1+ε) dµ ≤ C
∫

2B

vp−(1+ε) dµ (13.3)

for positive supersolutions v of (13.1) in 2B and for ε > 0, with C independent
of v; this will be applied to truncations of u. Such inequalities are well known in
the cases considered above, see e.g. [28, Lemma 3.57] and [32, Lemma 3.1]. (In
[32, Lemma 3.1], this is proved for solutions of (13.1), but the proof goes through
verbatim also for supersolutions when q = p− (1 + ε).)

For simplicity, we formulate and prove the next result only in weighted Rn with a
p-admissible weight as in [28]. The case of Riemannian manifolds with nonnegative
Ricci curvature (so that the doubling property and the p-Poincaré inequality hold,
see Haj lasz–Koskela [25, Chapter 10.1]) is similar with obvious modifications. For
the definition and existence of singular and Green functions in these settings we
refer to [28, Section 7.38] and [31, Definition 3.9 and Theorem 3.19]. Since the
capacitary estimate (13.2) is in [28, Theorem 7.41] proved only when Ω is a ball,
we restrict ourselves to this case. (In [28, Theorem 7.41] the assumption that h is
nonnegative should be added.)

Theorem 13.1. Let w be a p-admissible weight on Rn, dµ = w dx and assume that
A : Rn × Rn → Rn satisfies the ellipticity conditions (3.3)–(3.7) in [28]. Assume
that the capacity Cp,µ({x0}) = 0 and let u ∈ H1,p

loc (BR \ {x0}, w) be a continuous
weak solution of (13.1) in BR \ {x0} such that

u(x0) = lim
x→x0

u(x) =∞. (13.4)

Assume that u has zero boundary values on ∂BR, either in the Sobolev sense (S5)
or as the limit

lim
Ω3y→x

u(x) = 0 for all x ∈ ∂BR. (13.5)

Then the conclusions in Section 9 hold for u in Ω := BR. Also Theorems 10.1
and 10.3 hold for gu = |∇u|.

Remark 13.2. In fact, the assumptions (S5) and (13.5) in Theorem 13.1 are equiv-
alent. Indeed, [28, Theorem 6.31] (applied to BR \ BR/2) shows that (S5) im-
plies (13.5). The converse implication follows from the uniqueness Theorem 3.12 in
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Björn–Björn–Mwasa [12], together with [28, Corollary 9.29] applied to the boundary
data f := uη ∈ H1,p(BR \BR/2, w) with a suitable cut-off function η ∈ C∞0 (BR).

Moreover, Harnack’s inequality on spheres Sr implies that for nonnegative u
the limit in (13.4) can be replaced by lim sup. The removability Theorem 7.35 in
[28] shows that u is A-superharmonic in the ball BR. Hence, by Theorem 2.2 in
Mikkonen [53] (or [28, Theorem 21.2]), there exists a Riesz measure µ such that
divA(x,∇u) = −µ. As u is A-harmonic in BR \ {x0} the Riesz measure must be
concentrated to {x0}. Therefore a multiple of u is a Green function for (13.1), as
defined in the beginning of this section.

Proof of Theorem 13.1. Proposition A.17 in [5] implies that X = (Rn, µ) satisfies
the general assumptions from the beginning of Section 6. Theorem 7.41 in [28] shows
that (13.2), and hence also (7.1), holds. Thus u has the same (non)integrability
properties near x0 as the p-harmonic Green functions studied in this paper for
bounded domains in X. Moreover, u is locally bounded in BR \ {x0}. Together
with (13.5), this proves the results from Section 9 for u.

To obtain the integrability of ∇u, note that the proof of Theorem 8.2 shows
that statement (a) therein holds for u, since its shifted truncations uk in (8.1) are
supersolutions and thus satisfy the Caccioppoli inequality (13.3) whenever 2B b Ω.
Combined with the integrability of u itself, we conclude that ∇u ∈ Ltloc(Ω) when
0 < t < tp, as in Theorem 10.1. As u ∈ H1,p(BR \ BR/2, w) by (S5), we conclude
that ∇u ∈ Lt(Ω) when 0 < t < tp.

For the nonintegrability of ∇u, we follow the proof of Theorem 10.3. The func-
tions min{1, u/mr} and vk, considered therein, are admissible for capt,µ(Br,Ω) and

captp,µ(Bk, Bk−1) also in this case. The minimum principle holds for u by [28,
Theorem 7.12]. Since the rest of the proof depends only on the capacity estimates
(10.2) and (10.5), provided in this case by (13.2), the conclusions of Theorem 10.3
follow.
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