Show simple item record

dc.contributor.authorBjörn, Anders
dc.contributor.authorBjörn, Jana
dc.contributor.authorLehrbäck, Juha
dc.date.accessioned2024-02-28T07:04:39Z
dc.date.available2024-02-28T07:04:39Z
dc.date.issued2023
dc.identifier.citationBjörn, A., Björn, J., & Lehrbäck, J. (2023). Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions. <i>Journal d'Analyse Mathematique</i>, <i>150</i>(1), 159-214. <a href="https://doi.org/10.1007/s11854-023-0273-4" target="_blank">https://doi.org/10.1007/s11854-023-0273-4</a>
dc.identifier.otherCONVID_182288272
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93700
dc.description.abstractIn a complete metric space equipped with a doubling measure supporting a p-Poincaré inequality, we prove sharp growth and integrability results for p-harmonic Green functions and their minimal p-weak upper gradients. We show that these properties are determined by the growth of the underlying measure near the singularity. Corresponding results are obtained also for more general p-harmonic functions with poles, as well as for singular solutions of elliptic differential equations in divergence form on weighted Rn and on manifolds. The proofs are based on a new general capacity estimate for annuli, which implies precise pointwise estimates for p-harmonic Green functions. The capacity estimate is valid under considerably milder assumptions than above. We also use it, under these milder assumptions, to characterize singletons of zero capacity and the p-parabolicity of the space. This generalizes and improves earlier results that have been important especially in the context of Riemannian manifolds.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherHebrew University Magnes Press; Springer
dc.relation.ispartofseriesJournal d'Analyse Mathematique
dc.rightsIn Copyright
dc.titleVolume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202402282172
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineAnalyysin ja dynamiikan tutkimuksen huippuyksikköfi
dc.contributor.oppiaineMathematicsen
dc.contributor.oppiaineAnalysis and Dynamics Research (Centre of Excellence)en
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange159-214
dc.relation.issn0021-7670
dc.relation.numberinseries1
dc.relation.volume150
dc.type.versionacceptedVersion
dc.rights.copyright© Hebrew University Magnes Press; Springer 2023
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysopotentiaaliteoria
dc.subject.ysomittateoria
dc.subject.ysoRiemannin monistot
dc.subject.ysometriset avaruudet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p18911
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
jyx.subject.urihttp://www.yso.fi/onto/yso/p39163
jyx.subject.urihttp://www.yso.fi/onto/yso/p27753
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/s11854-023-0273-4
jyx.fundinginformationA. B. and J. B. were supported by the Swedish Research Council, grants 2016-03424 resp., 621-2014-3974 and 2018-04106.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright