dc.contributor.author | Björn, Anders | |
dc.contributor.author | Björn, Jana | |
dc.contributor.author | Lehrbäck, Juha | |
dc.date.accessioned | 2024-02-28T07:04:39Z | |
dc.date.available | 2024-02-28T07:04:39Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Björn, A., Björn, J., & Lehrbäck, J. (2023). Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions. <i>Journal d'Analyse Mathematique</i>, <i>150</i>(1), 159-214. <a href="https://doi.org/10.1007/s11854-023-0273-4" target="_blank">https://doi.org/10.1007/s11854-023-0273-4</a> | |
dc.identifier.other | CONVID_182288272 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/93700 | |
dc.description.abstract | In a complete metric space equipped with a doubling measure supporting a p-Poincaré inequality, we prove sharp growth and integrability results for p-harmonic Green functions and their minimal p-weak upper gradients. We show that these properties are determined by the growth of the underlying measure near the singularity. Corresponding results are obtained also for more general p-harmonic functions with poles, as well as for singular solutions of elliptic differential equations in divergence form on weighted Rn and on manifolds.
The proofs are based on a new general capacity estimate for annuli, which implies precise pointwise estimates for p-harmonic Green functions. The capacity estimate is valid under considerably milder assumptions than above. We also use it, under these milder assumptions, to characterize singletons of zero capacity and the p-parabolicity of the space. This generalizes and improves earlier results that have been important especially in the context of Riemannian manifolds. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Hebrew University Magnes Press; Springer | |
dc.relation.ispartofseries | Journal d'Analyse Mathematique | |
dc.rights | In Copyright | |
dc.title | Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202402282172 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Analyysin ja dynamiikan tutkimuksen huippuyksikkö | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.contributor.oppiaine | Analysis and Dynamics Research (Centre of Excellence) | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 159-214 | |
dc.relation.issn | 0021-7670 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 150 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Hebrew University Magnes Press; Springer 2023 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | potentiaaliteoria | |
dc.subject.yso | mittateoria | |
dc.subject.yso | Riemannin monistot | |
dc.subject.yso | metriset avaruudet | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18911 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13386 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39163 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27753 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1007/s11854-023-0273-4 | |
jyx.fundinginformation | A. B. and J. B. were supported by the Swedish Research Council, grants 2016-03424 resp., 621-2014-3974 and 2018-04106. | |
dc.type.okm | A1 | |