Näytä suppeat kuvailutiedot

dc.contributor.authorWanakai, Indire Sammy
dc.contributor.authorKareru, Gachoki Patrick
dc.contributor.authorSujee, Makhanu David
dc.contributor.authorMadivoli, Shigwenya Edwin
dc.contributor.authorGachui, Maina Ernest
dc.contributor.authorKairigo, Kinoti Pius
dc.date.accessioned2024-02-22T09:44:28Z
dc.date.available2024-02-22T09:44:28Z
dc.date.issued2023
dc.identifier.citationWanakai, I. S., Kareru, G. P., Sujee, M. D., Madivoli, S. E., Gachui, M. E., & Kairigo, K. P. (2023). Kinetics of Rifampicin Antibiotic Degradation Using Green Synthesized Iron Oxide Nanoparticles. <i>Chemistry Africa</i>, <i>6</i>, 967-981. <a href="https://doi.org/10.1007/s42250-022-00543-w" target="_blank">https://doi.org/10.1007/s42250-022-00543-w</a>
dc.identifier.otherCONVID_165007954
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93602
dc.description.abstractPurpose The presence of antibiotics in water is persistent, bioaccumulative, and harmful to humans and aquatic habitats, so we need to find ways to remove them. This study investigated the kinetics of Rifampicin antibiotic degradation using green synthesized iron oxide nanoparticles. Methods Iron nanoparticles were synthesized using the leaves of Galinsoga parviflora (Gp), Conyza bonariensis (Cb), and Bidens pilosa (Bp). The effect of temperature, pH, time, and adsorbent dose on the rate of degradation of antibiotic by the nanoparticles and their chemical kinetics was evaluated by employing first and second-order kinetics. The efficiency was determined using the percentage degradation of the antibiotic. Results The analysis of degradation was based on the absorbance at the wavelength of absorbance of the Rifampicin antibiotic (475 nm), and the nanoparticles were found to degrade the antibiotic. The antibiotic was degraded by the presence of hydrogen peroxide and the nanoparticles; at a pH of 6.5, 3, and 12, the Conyza bonariensis (CbNPs) nanoparticles were degraded at 78.12, 86.80, and 87.73% within 58, 20, and 30 min, Galinsoga perviflora nanoparticles (GpNPs) at 74.6, 86.8, and 85.9% for 52, 16, and 24 min; and Bidens pilosa nanoparticles (BpNPs) by 79.8, 88.7, and 81.0% for 64, 12, and 24 min, respectively. The dosage of the nanoparticles was found to play a minimal role in degradation, as 20 mg, 10 mg, 5 mg, and 1 mg degraded the antibiotic by 65.5, 48.5, 61.5, and 58.4% for 40, 60, 80, and 144 min. Temperature also effected the degradation of the antibiotic; temperatures of 25, 40, 50, and 60℃ also revealed a reduced time of degradation from 30 to 5 min. Sunlight radiation also had the highest degradation time of 5 min. The degradation of rifampicin using iron oxide nanoparticles was found to be pseudo-second-order, endothermic, and dependent on the reactant dose used during the study, and variation in reaction conditions led to an increase in the percent degradation observed. Conclusion Iron nanoparticles synthesized using Gp, Cb, and Bp could be used as a catalyst in the presence of hydrogen peroxide to degrade rifampicin in aqueous media to carbon IV oxide and water.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofseriesChemistry Africa
dc.rightsIn Copyright
dc.subject.otherpharmaceuticals
dc.subject.otherrifampicin
dc.subject.otheriron nanoparticles
dc.subject.othercatalytic activity
dc.subject.otherkinetics
dc.titleKinetics of Rifampicin Antibiotic Degradation Using Green Synthesized Iron Oxide Nanoparticles
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202402222068
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.contributor.oppiaineYmpäristötiedefi
dc.contributor.oppiaineEnvironmental Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange967-981
dc.relation.issn2522-5758
dc.relation.volume6
dc.type.versionacceptedVersion
dc.rights.copyright© The Tunisian Chemical Society and Springer Nature Switzerland AG 2022
dc.rights.accesslevelopenAccessfi
dc.subject.ysonanohiukkaset
dc.subject.ysoantibiootit
dc.subject.ysokatalyytit
dc.subject.ysolääkeaineet
dc.subject.ysovihreä kemia
dc.subject.ysorautaoksidit
dc.subject.ysovedenpuhdistus
dc.subject.ysohapettuminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p23451
jyx.subject.urihttp://www.yso.fi/onto/yso/p10820
jyx.subject.urihttp://www.yso.fi/onto/yso/p15480
jyx.subject.urihttp://www.yso.fi/onto/yso/p1707
jyx.subject.urihttp://www.yso.fi/onto/yso/p12401
jyx.subject.urihttp://www.yso.fi/onto/yso/p28928
jyx.subject.urihttp://www.yso.fi/onto/yso/p15306
jyx.subject.urihttp://www.yso.fi/onto/yso/p9119
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/s42250-022-00543-w
jyx.fundinginformationNo funding was provided.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright