Ibuprofen degradation using a Co-doped carbon matrix derived from peat as a peroxymonosulphate activator
Ren, Z., Romar, H., Varila, T., Xu, X., Wang, Z., Sillanpää, M., & Leiviskä, T. (2021). Ibuprofen degradation using a Co-doped carbon matrix derived from peat as a peroxymonosulphate activator. Environmental Research, 193, Article 110564. https://doi.org/10.1016/j.envres.2020.110564
Julkaistu sarjassa
Environmental ResearchTekijät
Xu, Xing |
Päivämäärä
2021Tekijänoikeudet
© 2020 The Author(s). Published by Elsevier Inc.
The wider presence of pharmaceuticals and personal care products in nature is a major cause for concern in society. Among pharmaceuticals, the anti-inflammatory drug ibuprofen has commonly been found in aquatic and soil environments. We produced a Co-doped carbon matrix (Co-P 850) through the carbonization of Co2+ saturated peat and used it as a peroxymonosulphate activator to aid ibuprofen degradation. The properties of Co-P 850 were analysed using field emission scanning electron microscopy, energy filtered transmission electron microscopy and X-ray photoelectron spectroscopy. The characterization results showed that Co/Fe oxides were generated and tightly embedded into the carbon matrix after carbonization. The degradation results indicated that high temperature and slightly acidic to neutral conditions (pH = 5 to 7.5) promoted ibuprofen degradation efficiency in the Co-P 850/peroxymonosulphate system. Analysis showed that approx. 52% and 75% of the dissolved organic carbon was removed after two hours and five hours of reaction time, respectively. Furthermore, the existence of chloride and bicarbonate had adverse effects on the degradation of ibuprofen. Quenching experiments and electron paramagnetic resonance analysis confirmed that SO4·-, ·OH and O2·- radicals together contributed to the high ibuprofen degradation efficiency. In addition, we identified 13 degradation intermediate compounds and an ibuprofen degradation pathway by mass spectrometry analysis and quantum computing. Based on the results and methods presented in this study, we propose a novel way for the synthesis of a Co-doped catalyst from spent NaOH-treated peat and the efficient catalytic degradation of ibuprofen from contaminated water.
...
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0013-9351Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/47312802
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The research was supported by the Finnish National Agency for Education through the EDUFI Fellowship (TM-18-10999).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Heterogeneous Fenton Oxidation Using Magnesium Ferrite Nanoparticles for Ibuprofen Removal from Wastewater : Optimization and Kinetics Studies
Ivanets, Andrei; Prozorovich, Vladimir; Roshchina, Marina; Grigoraviciute-Puroniene, Inga; Zarkov, Aleksej; Kareiva, Aivaras; Wang, Zhao; Srivastava, Varsha; Sillanpää, Mika (Hindawi Limited, 2020)In this study, the catalytic properties of Fenton-like catalyst based on magnesium ferrite nanoparticles for IBP degradation were examined. Structural and morphological studies showed the low crystallinity and mesoporous ... -
Production of ethyl lactate by activated carbon-supported Sn and Zn oxide catalysts utilizing lignocellulosic side streams
Kupila, Riikka; Lappalainen, Katja; Hu, Tao; Heponiemi, Anne; Bergna, Davide; Lassi, Ulla (Elsevier, 2021)In this study, activated carbon-supported Sn and Zn oxide catalysts were prepared from hydrolysis lignin and used for the conversion of model solutions of trioses, hexoses, and lignocellulosic biomass hydrolysates to ethyl ... -
Lignin-based activated carbon-supported metal oxide catalysts in lactic acid production from glucose
Kupila, Riikka; Lappalainen, Katja; Hu, Tao; Romar, Henrik; Lassi, Ulla (Elsevier, 2021)In this study, heterogeneous biomass-based activated carbon-supported metal oxide catalysts were prepared and tested for lactic acid production from glucose in aqueous solution. Activated carbons were produced from hydrolysis ... -
Degradation of Antibiotic Vancomycin by UV Photolysis and Pulsed Corona Discharge Combined with Extrinsic Oxidants
Nikitin, Dmitri; Kaur, Balpreet; Preis, Sergei; Dulova, Niina (MDPI AG, 2023)Antibiotics are the most frequently detected pharmaceuticals in the environment creating conditions for the development of resistant genes in bacteria. Degradation and mineralization of glycopeptide antibiotic vancomycin ... -
Comparing the adsorption of selected pharmaceuticals onto a peat-based and a coal-based activated carbons in a fixed-bed column
Aaltonen, Johanna (2024)Activated carbon filtration is a common way to eliminate pharmaceuticals and other micropollutants from water. Still, the process at both wastewater and drinking water treatment plants is unsuccessful in eliminating ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.