Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics
Yao, Q., Liu, L., Malola, S., Ge, M., Xu, H., Wu, Z., Chen, T., Cao, Y., Matus, M. F., Pihlajamäki, A., Han, Y., Häkkinen, H., & Xie, J. (2023). Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics. Nature Chemistry, 15(2), 230-239. https://doi.org/10.1038/s41557-022-01079-9
Published in
Nature ChemistryDate
2023Copyright
© 2023 Springer Nature
The controllable packing of functional nanoparticles (NPs) into crystalline lattices is of interest in the development of NP-based materials. Here we demonstrate that the size, morphology and symmetry of such supercrystals can be tailored by adjusting the surface dynamics of their constituent NPs. In the presence of excess tetraethylammonium cations, atomically precise [Au25(SR)18]− NPs (where SR is a thiolate ligand) can be crystallized into micrometre-sized hexagonal rod-like supercrystals, rather than as face-centred-cubic superlattices otherwise. Experimental characterization supported by theoretical modelling shows that the rod-like crystals consist of polymeric chains in which Au25 NPs are held together by a linear SR–[Au(I)–SR]4 interparticle linker. This linker is formed by conjugation of two dynamically detached SR–[Au(I)–SR]2 protecting motifs from adjacent Au25 particles, and is stabilized by a combination of CH⋯π and ion-pairing interactions between tetraethylammonium cations and SR ligands. The symmetry, morphology and size of the resulting supercrystals can be systematically tuned by changing the concentration and type of the tetraalkylammonium cations.
...
Publisher
Nature Publishing GroupISSN Search the Publication Forum
1755-4330Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/159523174
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Research costs of Academy Professor, AoF; Research profiles, AoF; Research post as Academy Professor, AoFAdditional information about funding
We acknowledge the financial support of the Ministry of Education, Singapore (Academic Research Grant R-279-000-580-112 (J.X) and R-279-000-538-114 (J.X.)) and the National Natural Science Foundation of China (22071174 (J.X.)). The theoretical work at the University of Jyväskylä was supported by the Academy of Finland (grants 292352 (H.H.), 318905 (H.H.), 319208 (H.H.) and H.H.’s Academy Professorship). The computations were done at the CSC computing centre in Finland and in the FGCI–Finnish Grid and Cloud Infrastructure (persistent identifier, urn:nbn:fi:research-infras-2016072533). ...License
Related items
Showing items with similar title or keywords.
-
Magnetically induced currents and aromaticity in ligand-stabilized Au and AuPt superatoms
López-Estrada, Omar; Zuniga-Gutierrez, Bernardo; Selenius, Elli; Malola, Sami; Häkkinen, Hannu (Nature Publishing Group, 2021)Understanding magnetically induced currents (MICs) in aromatic or metallic nanostructures is crucial for interpreting local magnetic shielding and NMR data. Direct measurements of the induced currents have been successful ... -
Exploring the self-assembly of resorcinarenes : from molecular level interactions to mesoscopic structures
Helttunen, Kaisa (University of Jyväskylä, 2012) -
Plasmonic twinned silver nanoparticles with molecular precision
Yang, Huayan; Wang, Yu; Chen, Xi; Zhao, Xiaojing; Gu, Lin; Huang, Huaqi; Yan, Juanzhu; Xu, Chaofa; Li, Gang; Wu, Junchao; Edwards, Alison J.; Dittrich, Birger; Tang, Zichao; Wang, Dongdong; Lehtovaara, Lauri; Häkkinen, Hannu; Zheng, Nanfeng (Nature Publishing Group, 2016)Determining the structures of nanoparticles at atomic resolution is vital to understand their structure–property correlations. Large metal nanoparticles with core diameter beyond 2 nm have, to date, eluded characterization ... -
Synthesis, characterization, and reactivity of heavier group 13 and 14 metallylenes and metalloid clusters : small molecule activation and more
Vasko, Petra (University of Jyväskylä, 2015) -
DNA Origami-Mediated Substrate Nanopatterning of Inorganic Structures for Sensing Applications
Piskunen, Petteri; Shen, Boxuan; Julin, Sofia; Ijäs, Heini; Toppari, Jussi J.; Kostiainen, Mauri A.; Linko, Veikko (MyJove Corp., 2019)Structural DNA nanotechnology provides a viable route for building from the bottom-up using DNA as construction material. The most common DNA nanofabrication technique is called DNA origami, and it allows high-throughput ...