Show simple item record

dc.contributor.authorNobili, Francesco
dc.contributor.authorViolo, Ivan Yuri
dc.date.accessioned2024-02-14T12:22:30Z
dc.date.available2024-02-14T12:22:30Z
dc.date.issued2024
dc.identifier.citationNobili, F., & Violo, I. Y. (2024). Stability of Sobolev inequalities on Riemannian manifolds with Ricci curvature lower bounds. <i>Advances in Mathematics</i>, <i>440</i>, Article 109521. <a href="https://doi.org/10.1016/j.aim.2024.109521" target="_blank">https://doi.org/10.1016/j.aim.2024.109521</a>
dc.identifier.otherCONVID_207000065
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93386
dc.description.abstractWe study the qualitative stability of two classes of Sobolev inequalities on Riemannian manifolds. In the case of positive Ricci curvature, we prove that an almost extremal function for the sharp Sobolev inequality is close to an extremal function of the round sphere. In the setting of non-negative Ricci curvature and Euclidean volume growth, we show an analogous result in comparison with the extremal functions in the Euclidean Sobolev inequality. As an application, we deduce a stability result for minimizing Yamabe metrics. The arguments rely on a generalized Lions' concentration compactness on varying spaces and on rigidity results of Sobolev inequalities on singular spaces.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesAdvances in Mathematics
dc.rightsCC BY 4.0
dc.subject.otherRicci curvature
dc.subject.otherSobolev inequalities
dc.subject.otherconcentration compactness
dc.subject.otherstability
dc.titleStability of Sobolev inequalities on Riemannian manifolds with Ricci curvature lower bounds
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202402141866
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0001-8708
dc.relation.volume440
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s). Published by Elsevier Inc.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber314789
dc.relation.grantnumber328846
dc.subject.ysodifferentiaaligeometria
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.subject.ysoepäyhtälöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p16682
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
jyx.subject.urihttp://www.yso.fi/onto/yso/p15720
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.aim.2024.109521
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundinginformationF.N. is supported by the Academy of Finland Grant No. 314789. I.Y.V. is supported by the Academy of Finland projects Incidences on Fractals, Grant No. 321896 and Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups, Grant No. 328846.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0