Curvature exponent and geodesic dimension on Sard-regular Carnot groups
Nicolussi Golo, S., & Zhang, Y. (2024). Curvature exponent and geodesic dimension on Sard-regular Carnot groups. Analysis and Geometry in Metric Spaces, 12(1), Article 20240004. https://doi.org/10.1515/agms-2024-0004
Julkaistu sarjassa
Analysis and Geometry in Metric SpacesPäivämäärä
2024Tekijänoikeudet
© 2024 the Authors
In this study, we characterize the geodesic dimension NGEO and give a new lower bound to the curvature exponent NCE on Sard-regular Carnot groups. As an application, we give an example of step-two Carnot group on which NCE GE > N O; this answers a question posed by Rizzi (Measure contraction properties of Carnot groups. Calc. Var. Partial Differential Equations 55 (2016), no. 3, Art. 60, 20).
Julkaisija
De GruyterISSN Hae Julkaisufoorumista
2299-3274Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/233316698
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; Akatemiatutkijan tutkimuskulut, SALisätietoja rahoituksesta
S.N.G. has been supported by the Academy of Finland (Grant 328846, “Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups,” Grant 322898 “Sub-Riemannian Geometry via Metric-geometry and Lie-group Theory,” Grant 314172 “Quantitative rectifiability in Euclidean and non-Euclidean spaces”).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
Le Donne, Enrico (De Gruyter Open, 2017)Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with ... -
Lipschitz Carnot-Carathéodory Structures and their Limits
Antonelli, Gioacchino; Le Donne, Enrico; Nicolussi Golo, Sebastiano (Springer Science and Business Media LLC, 2023)In this paper we discuss the convergence of distances associated to converging structures of Lipschitz vector fields and continuously varying norms on a smooth manifold. We prove that, under a mild controllability assumption ... -
Semigenerated Carnot algebras and applications to sub-Riemannian perimeter
Le Donne, Enrico; Moisala, Terhi (Springer, 2021)This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our ... -
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ... -
Topics in the geometry of non-Riemannian lie groups
Nicolussi Golo, Sebastiano (University of Jyväskylä, 2017)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.