Näytä suppeat kuvailutiedot

dc.contributor.authorMiao, Wei
dc.contributor.authorWang, Lijun
dc.contributor.authorLu, Huchuan
dc.contributor.authorHuang, Kaining
dc.contributor.authorShi, Xinchu
dc.contributor.authorLiu, Bocong
dc.date.accessioned2024-01-19T07:11:12Z
dc.date.available2024-01-19T07:11:12Z
dc.date.issued2024
dc.identifier.citationMiao, W., Wang, L., Lu, H., Huang, K., Shi, X., & Liu, B. (2024). ITrans : generative image inpainting with transformers. <i>Multimedia Systems</i>, <i>30</i>(1), Article 21. <a href="https://doi.org/10.1007/s00530-023-01211-w" target="_blank">https://doi.org/10.1007/s00530-023-01211-w</a>
dc.identifier.otherCONVID_197929931
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/92893
dc.description.abstractDespite significant improvements, convolutional neural network (CNN) based methods are struggling with handling long-range global image dependencies due to their limited receptive fields, leading to an unsatisfactory inpainting performance under complicated scenarios. To address this issue, we propose the Inpainting Transformer (ITrans) network, which combines the power of both self-attention and convolution operations. The ITrans network augments convolutional encoder–decoder structure with two novel designs, i.e., the global and local transformers. The global transformer aggregates high-level image context from the encoder in a global perspective, and propagates the encoded global representation to the decoder in a multi-scale manner. Meanwhile, the local transformer is intended to extract low-level image details inside the local neighborhood at a reduced computational overhead. By incorporating the above two transformers, ITrans is capable of both global relationship modeling and local details encoding, which is essential for hallucinating perceptually realistic images. Extensive experiments demonstrate that the proposed ITrans network outperforms favorably against state-of-the-art inpainting methods both quantitatively and qualitatively.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesMultimedia Systems
dc.rightsCC BY 4.0
dc.subject.otherconvolutional neural network
dc.subject.otherimage inpainting
dc.subject.otherglobal transformer
dc.subject.otherlocal transformer
dc.titleITrans : generative image inpainting with transformers
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202401191388
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0942-4962
dc.relation.numberinseries1
dc.relation.volume30
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2024
dc.rights.accesslevelopenAccessfi
dc.subject.ysokuvankäsittely
dc.subject.ysoneuroverkot
dc.subject.ysovalokuvat
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p6449
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p2699
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00530-023-01211-w
jyx.fundinginformationOpen Access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0