ITrans : generative image inpainting with transformers
Miao, W., Wang, L., Lu, H., Huang, K., Shi, X., & Liu, B. (2024). ITrans : generative image inpainting with transformers. Multimedia Systems, 30(1), Article 21. https://doi.org/10.1007/s00530-023-01211-w
Published in
Multimedia SystemsDate
2024Copyright
© The Author(s) 2024
Despite significant improvements, convolutional neural network (CNN) based methods are struggling with handling long-range global image dependencies due to their limited receptive fields, leading to an unsatisfactory inpainting performance under complicated scenarios. To address this issue, we propose the Inpainting Transformer (ITrans) network, which combines the power of both self-attention and convolution operations. The ITrans network augments convolutional encoder–decoder structure with two novel designs, i.e., the global and local transformers. The global transformer aggregates high-level image context from the encoder in a global perspective, and propagates the encoded global representation to the decoder in a multi-scale manner. Meanwhile, the local transformer is intended to extract low-level image details inside the local neighborhood at a reduced computational overhead. By incorporating the above two transformers, ITrans is capable of both global relationship modeling and local details encoding, which is essential for hallucinating perceptually realistic images. Extensive experiments demonstrate that the proposed ITrans network outperforms favorably against state-of-the-art inpainting methods both quantitatively and qualitatively.
...
Publisher
SpringerISSN Search the Publication Forum
0942-4962Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/197929931
Metadata
Show full item recordCollections
Additional information about funding
Open Access funding provided by University of Jyväskylä (JYU).License
Related items
Showing items with similar title or keywords.
-
Causality-Aware Convolutional Neural Networks for Advanced Image Classification and Generation
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2023)Smart manufacturing uses emerging deep learning models, and particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), for different industrial diagnostics tasks, e.g., classification, ... -
Hyper-flexible Convolutional Neural Networks based on Generalized Lehmer and Power Means
Terziyan, Vagan; Malyk, Diana; Golovianko, Mariia; Branytskyi, Vladyslav (Elsevier, 2022)Convolutional Neural Network is one of the famous members of the deep learning family of neural network architectures, which is used for many purposes, including image classification. In spite of the wide adoption, such ... -
Generating Hyperspectral Skin Cancer Imagery using Generative Adversarial Neural Network
Annala, Leevi; Neittaanmäki, Noora; Paoli, John; Zaar, Oscar; Pölönen, Ilkka (IEEE, 2020)In this study we develop a proof of concept of using generative adversarial neural networks in hyperspectral skin cancer imagery production. Generative adversarial neural network is a neural network, where two neural ... -
Chlorophyll Concentration Retrieval by Training Convolutional Neural Network for Stochastic Model of Leaf Optical Properties (SLOP) Inversion
Annala, Leevi; Honkavaara, Eija; Tuominen, Sakari; Pölönen, Ilkka (MDPI AG, 2020)Miniaturized hyperspectral imaging techniques have developed rapidly in recent years and have become widely available for different applications. Combining calibrated hyperspectral imagery with inverse physically based ... -
Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours : A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and Convolutional Neural Networks
Lindholm, Vivian; Raita-Hakola, Anna-Maria; Annala, Leevi; Salmivuori, Mari; Jeskanen, Leila; Saari, Heikki; Koskenmies, Sari; Pitkänen, Sari; Pölönen, Ilkka; Isoherranen, Kirsi; Ranki, Annamari (MDPI AG, 2022)Several optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. ...