Bourgain-Brezis-Mironescu formula for Ws,p q -spaces in arbitrary domains
Mohanta, K. (2024). Bourgain-Brezis-Mironescu formula for Ws,p q -spaces in arbitrary domains. Calculus of Variations and Partial Differential Equations, 63(2), Article 31. https://doi.org/10.1007/s00526-023-02637-w
Julkaistu sarjassa
Calculus of Variations and Partial Differential EquationsTekijät
Päivämäärä
2024Tekijänoikeudet
© The Author(s) 2024
Under certain restrictions on s, p, q, the Triebel-Lizorkin spaces can be viewed as generalised fractional Sobolev spaces Ws,p q . In this article, we show that the Bourgain-Brezis-Mironescu formula holds for Ws,p q -seminorms in arbitrary domain. This addresses an open question raised by Brazke-Schikorra-Yung (Calc Var Partial Differ Equ 62(2):41–33, (2023).
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0944-2669Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/197917460
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
Open Access funding provided by University of Jyväskylä (JYU). The research is funded by Academy of Finland grant: Geometrinen Analyysi (21000046081).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Maximal function estimates and self-improvement results for Poincaré inequalities
Kinnunen, Juha; Lehrbäck, Juha; Vähäkangas, Antti; Zhong, Xiao (Springer Berlin Heidelberg, 2019)Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, ... -
On the BBM-Phenomenon in Fractional Poincaré–Sobolev Inequalities with Weights
Hurri-Syrjänen, Ritva; Martínez-Perales, Javier C.; Pérez, Carlos; Vähäkangas, Antti V. (Oxford University Press (OUP), 2023)In this paper, we unify and improve some of the results of Bourgain, Brezis, and Mironescu and the weighted Poincaré–Sobolev estimate by Fabes, Kenig, and Serapioni. More precisely, we get weighted counterparts of the ... -
Weighted norm inequalities in a bounded domain by the sparse domination method
Kurki, Emma-Karoliina; Vähäkangas, Antti V. (Springer, 2021)We prove a local two-weight Poincaré inequality for cubes using the sparse domination method that has been influential in harmonic analysis. The proof involves a localized version of the Fefferman–Stein inequality for the ... -
Rungen lause ja sovelluksia inversio-ongelmiin
Salo, Mikko (Suomen Fyysikkoseura, 2018) -
ε-approximability of harmonic functions in Lp implies uniform rectifiability
Bortz, Simon; Tapiola, Olli (American Mathematical Society, 2019)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.