Rungen lause ja sovelluksia inversio-ongelmiin
Salo, M. (2018). Rungen lause ja sovelluksia inversio-ongelmiin. Arkhimedes, 2018(3), 6-11. http://urn.fi/URN:NBN:fi:ELE-2519350
Published in
ArkhimedesAuthors
Date
2018Copyright
© Suomen Fyysikkoseura, 2018
Publisher
Suomen FyysikkoseuraISSN Search the Publication Forum
0004-1920Keywords
Original source
http://urn.fi/URN:NBN:fi:ELE-2519350Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/28824542
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Optimal recovery of a radiating source with multiple frequencies along one line
Brander, Tommi; Ilmavirta, Joonas; Piiroinen, Petteri; Tyni, Teemu (American Institute of Mathematical Sciences (AIMS), 2020)We study an inverse problem where an unknown radiating source is observed with collimated detectors along a single line and the medium has a known attenuation. The research is motivated by applications in SPECT and beam ... -
Determining a Random Schrödinger Operator : Both Potential and Source are Random
Li, Jingzhi; Liu, Hongyu; Ma, Shiqi (Springer, 2021)We study an inverse scattering problem associated with a Schrödinger system where both the potential and source terms are random and unknown. The well-posedness of the forward scattering problem is first established in a ... -
Kinemaattinen inversio-ongelma pallosymmetrisellä monistolla
Mönkkönen, Keijo (2017)Tutkielman pääaiheena on maanjäristysaaltoihin ja Maan sisärakenteen tutkimiseen liittyvä käänteinen kinemaattinen ongelma. Maapalloa mallinnetaan kolmiulotteisella kompaktilla reunallisella monistolla \(\bar{B}^3(0, R)\), ... -
Recovering a Variable Exponent
Brander, Tommi; Siltakoski, Jarkko (Fakultät für Mathematik, Universität Bielefeld, 2021)We consider an inverse problem of recovering the non-linearity in the one dimensional variable exponent p(x)-Laplace equation from the Dirichlet-to-Neumann map. The variable exponent can be recovered up to the natural ... -
Refined instability estimates for some inverse problems
Kow, Pu-Zhao; Wang, Jenn-Nan (American Institute of Mathematical Sciences (AIMS), 2022)Many inverse problems are known to be ill-posed. The ill-posedness can be manifested by an instability estimate of exponential type, first derived by Mandache [29]. In this work, based on Mandache's idea, we refine the ...