Method for Radiance Approximation of Hyperspectral Data Using Deep Neural Network
Rahkonen, S., & Pölönen, I. (2023). Method for Radiance Approximation of Hyperspectral Data Using Deep Neural Network. In P. Neittaanmäki, & M.-L. Rantalainen (Eds.), Impact of Scientific Computing on Science and Society (pp. 315-325). Springer. Computational Methods in Applied Sciences, 58. https://doi.org/10.1007/978-3-031-29082-4_18
Julkaistu sarjassa
Computational Methods in Applied SciencesPäivämäärä
2023Oppiaine
Laskennallinen tiedeComputing, Information Technology and MathematicsComputational ScienceComputing, Information Technology and MathematicsPääsyrajoitukset
Embargo päättyy: 2025-07-08Pyydä artikkeli tutkijalta
Tekijänoikeudet
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
We propose a neural network model for calculating the radiance from raw hyperspectral data gathered using a Fabry–Perot interferometer color camera developed by VTT Technical Research Centre of Finland. The hyperspectral camera works by taking multiple images from different wavelength with varying interferometer settings. The raw data needs to be converted to radiance in order to make any use of it, but this leads to larger file sizes. Because of the amount of the data and the structure of the raw data, the processing has to be run in parallel, requiring a lot of memory and time. Using raw camera data could save processing time and file space in applications with computation time requirements. Secondly, this kind of neural network could be used for generating synthetic training data or use it in generative models. The proposed model approaches these problems by combining spatial and spectral-wise convolutions in neural network with minimizing a loss function utilizing the spectral distance and mean squared loss. The used dataset included images from many patients with melanoma skin cancer.
...
Julkaisija
SpringerEmojulkaisun ISBN
978-3-031-29081-7Kuuluu julkaisuun
Impact of Scientific Computing on Science and SocietyISSN Hae Julkaisufoorumista
1871-3033Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/183943739
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This research was supported by the University of Jyväskylä.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks
Nezami, Somayeh; Khoramshahi, Ehsan; Nevalainen, Olli; Pölönen, Ilkka; Honkavaara, Eija (MDPI AG, 2020)Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include ... -
Assessment of microalgae species, biomass and distribution from spectral images using a convolution neural network
Salmi, Pauliina; Pölönen, Ilkka; Pääkkönen, Salli; Taipale, Sami; Calderini, Marco (University of Jyväskylä, 2021-11-08)Artikkeliin "Assessment of microalgae species, biomass and distribution from spectral images using a convolution neural network" liittyvä aineisto koostuu seuraavista osista: 1.Transmittanssi-hyperspektrikuvat levänäytteistä ... -
Assessment of microalgae species, biomass, and distribution from spectral images using a convolution neural network
Salmi, Pauliina; Calderini, Marco; Pääkkönen, Salli; Taipale, Sami; Pölönen, Ilkka (Springer Science and Business Media LLC, 2022)Effective monitoring of microalgae growth is crucial for environmental observation, while the applications of this monitoring could also be expanded to commercial and research-focused microalgae cultivation. Currently, the ... -
Computational Methods in Spectral Imaging
Pölönen, Ilkka (Springer, 2023)Spectral imaging is an evolving technology with numerous applications. These images can be computationally processed in several ways. In addition to machine learning methods, spectral images can be processed mathematically ... -
Piecewise anomaly detection using minimal learning machine for hyperspectral images
Raita-Hakola, A.-M.; Pölönen, I. (Copernicus Publications, 2021)Hyperspectral imaging, with its applications, offers promising tools for remote sensing and Earth observation. Recent development has increased the quality of the sensors. At the same time, the prices of the sensors are ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.